/* * Copyright (c) 2003 Sun Microsystems, Inc. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistribution of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistribution in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Sun Microsystems, Inc. or the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * This software is provided "AS IS," without a warranty of any kind. * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A * PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. * SUN MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL NOT BE LIABLE * FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING * OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL * SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, * OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR * PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF * LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, * EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if HAVE_CONFIG_H # include #endif extern int verbose; static int use_built_in; /* Uses DeviceSDRs instead of SDRR */ static int sdr_max_read_len = GET_SDR_ENTIRE_RECORD; static int sdr_extended = 0; static long sdriana = 0; static struct sdr_record_list *sdr_list_head = NULL; static struct sdr_record_list *sdr_list_tail = NULL; static struct ipmi_sdr_iterator *sdr_list_itr = NULL; /* ipmi_sdr_get_unit_string - return units for base/modifier * * @type: unit type * @base: base * @modifier: modifier * * returns pointer to static string */ char * ipmi_sdr_get_unit_string(uint8_t type, uint8_t base, uint8_t modifier) { static char unitstr[16]; memset(unitstr, 0, sizeof (unitstr)); switch (type) { case 2: snprintf(unitstr, sizeof (unitstr), "%s * %s", unit_desc[base], unit_desc[modifier]); break; case 1: snprintf(unitstr, sizeof (unitstr), "%s/%s", unit_desc[base], unit_desc[modifier]); break; case 0: default: snprintf(unitstr, sizeof (unitstr), "%s", unit_desc[base]); break; } return unitstr; } /* sdr_convert_sensor_reading - convert raw sensor reading * * @sensor: sensor record * @val: raw sensor reading * * returns floating-point sensor reading */ double sdr_convert_sensor_reading(struct sdr_record_full_sensor *sensor, uint8_t val) { int m, b, k1, k2; double result; m = __TO_M(sensor->mtol); b = __TO_B(sensor->bacc); k1 = __TO_B_EXP(sensor->bacc); k2 = __TO_R_EXP(sensor->bacc); switch (sensor->unit.analog) { case 0: result = (double) (((m * val) + (b * pow(10, k1))) * pow(10, k2)); break; case 1: if (val & 0x80) val++; /* Deliberately fall through to case 2. */ case 2: result = (double) (((m * (int8_t) val) + (b * pow(10, k1))) * pow(10, k2)); break; default: /* Oops! This isn't an analog sensor. */ return 0.0; } switch (sensor->linearization & 0x7f) { case SDR_SENSOR_L_LN: result = log(result); break; case SDR_SENSOR_L_LOG10: result = log10(result); break; case SDR_SENSOR_L_LOG2: result = (double) (log(result) / log(2.0)); break; case SDR_SENSOR_L_E: result = exp(result); break; case SDR_SENSOR_L_EXP10: result = pow(10.0, result); break; case SDR_SENSOR_L_EXP2: result = pow(2.0, result); break; case SDR_SENSOR_L_1_X: result = pow(result, -1.0); /*1/x w/o exception */ break; case SDR_SENSOR_L_SQR: result = pow(result, 2.0); break; case SDR_SENSOR_L_CUBE: result = pow(result, 3.0); break; case SDR_SENSOR_L_SQRT: result = sqrt(result); break; case SDR_SENSOR_L_CUBERT: result = cbrt(result); break; case SDR_SENSOR_L_LINEAR: default: break; } return result; } /* sdr_convert_sensor_hysterisis - convert raw sensor hysterisis * * Even though spec says histerisis should be computed using Mx+B * formula, B is irrelevant when doing raw comparison * * threshold rearm point is computed using threshold +/- hysterisis * with the full formula however B can't be applied in raw comparisons * * @sensor: sensor record * @val: raw sensor reading * * returns floating-point sensor reading */ double sdr_convert_sensor_hysterisis(struct sdr_record_full_sensor *sensor, uint8_t val) { int m, k1, k2; double result; m = __TO_M(sensor->mtol); k1 = __TO_B_EXP(sensor->bacc); k2 = __TO_R_EXP(sensor->bacc); switch (sensor->unit.analog) { case 0: result = (double) (((m * val)) * pow(10, k2)); break; case 1: if (val & 0x80) val++; /* Deliberately fall through to case 2. */ case 2: result = (double) (((m * (int8_t) val) ) * pow(10, k2)); break; default: /* Oops! This isn't an analog sensor. */ return 0.0; } switch (sensor->linearization & 0x7f) { case SDR_SENSOR_L_LN: result = log(result); break; case SDR_SENSOR_L_LOG10: result = log10(result); break; case SDR_SENSOR_L_LOG2: result = (double) (log(result) / log(2.0)); break; case SDR_SENSOR_L_E: result = exp(result); break; case SDR_SENSOR_L_EXP10: result = pow(10.0, result); break; case SDR_SENSOR_L_EXP2: result = pow(2.0, result); break; case SDR_SENSOR_L_1_X: result = pow(result, -1.0); /*1/x w/o exception */ break; case SDR_SENSOR_L_SQR: result = pow(result, 2.0); break; case SDR_SENSOR_L_CUBE: result = pow(result, 3.0); break; case SDR_SENSOR_L_SQRT: result = sqrt(result); break; case SDR_SENSOR_L_CUBERT: result = cbrt(result); break; case SDR_SENSOR_L_LINEAR: default: break; } return result; } /* sdr_convert_sensor_tolerance - convert raw sensor reading * * @sensor: sensor record * @val: raw sensor reading * * returns floating-point sensor tolerance(interpreted) */ double sdr_convert_sensor_tolerance(struct sdr_record_full_sensor *sensor, uint8_t val) { int m, k2; double result; m = __TO_M(sensor->mtol); k2 = __TO_R_EXP(sensor->bacc); switch (sensor->unit.analog) { case 0: /* as suggested in section 30.4.1 of IPMI 1.5 spec */ result = (double) ((((m * (double)val/2)) ) * pow(10, k2)); break; case 1: if (val & 0x80) val++; /* Deliberately fall through to case 2. */ case 2: result = (double) (((m * ((double)((int8_t) val)/2))) * pow(10, k2)); break; default: /* Oops! This isn't an analog sensor. */ return 0.0; } switch (sensor->linearization & 0x7f) { case SDR_SENSOR_L_LN: result = log(result); break; case SDR_SENSOR_L_LOG10: result = log10(result); break; case SDR_SENSOR_L_LOG2: result = (double) (log(result) / log(2.0)); break; case SDR_SENSOR_L_E: result = exp(result); break; case SDR_SENSOR_L_EXP10: result = pow(10.0, result); break; case SDR_SENSOR_L_EXP2: result = pow(2.0, result); break; case SDR_SENSOR_L_1_X: result = pow(result, -1.0); /*1/x w/o exception */ break; case SDR_SENSOR_L_SQR: result = pow(result, 2.0); break; case SDR_SENSOR_L_CUBE: result = pow(result, 3.0); break; case SDR_SENSOR_L_SQRT: result = sqrt(result); break; case SDR_SENSOR_L_CUBERT: result = cbrt(result); break; case SDR_SENSOR_L_LINEAR: default: break; } return result; } /* sdr_convert_sensor_value_to_raw - convert sensor reading back to raw * * @sensor: sensor record * @val: converted sensor reading * * returns raw sensor reading */ uint8_t sdr_convert_sensor_value_to_raw(struct sdr_record_full_sensor * sensor, double val) { int m, b, k1, k2; double result; m = __TO_M(sensor->mtol); b = __TO_B(sensor->bacc); k1 = __TO_B_EXP(sensor->bacc); k2 = __TO_R_EXP(sensor->bacc); /* only works for analog sensors */ if (sensor->unit.analog > 2) return 0; /* don't divide by zero */ if (m == 0) return 0; result = (((val / pow(10, k2)) - (b * pow(10, k1))) / m); if ((result - (int) result) >= .5) return (uint8_t) ceil(result); else return (uint8_t) result; } /* ipmi_sdr_get_sensor_thresholds - return thresholds for sensor * * @intf: ipmi interface * @sensor: sensor number * * returns pointer to ipmi response */ struct ipmi_rs * ipmi_sdr_get_sensor_thresholds(struct ipmi_intf *intf, uint8_t sensor) { struct ipmi_rq req; memset(&req, 0, sizeof (req)); req.msg.netfn = IPMI_NETFN_SE; req.msg.cmd = GET_SENSOR_THRESHOLDS; req.msg.data = &sensor; req.msg.data_len = sizeof (sensor); return intf->sendrecv(intf, &req); } /* ipmi_sdr_get_sensor_hysteresis - return hysteresis for sensor * * @intf: ipmi interface * @sensor: sensor number * * returns pointer to ipmi response */ struct ipmi_rs * ipmi_sdr_get_sensor_hysteresis(struct ipmi_intf *intf, uint8_t sensor) { struct ipmi_rq req; uint8_t rqdata[2]; rqdata[0] = sensor; rqdata[1] = 0xff; /* reserved */ memset(&req, 0, sizeof (req)); req.msg.netfn = IPMI_NETFN_SE; req.msg.cmd = GET_SENSOR_HYSTERESIS; req.msg.data = rqdata; req.msg.data_len = 2; return intf->sendrecv(intf, &req); } /* ipmi_sdr_get_sensor_reading - retrieve a raw sensor reading * * @intf: ipmi interface * @sensor: sensor id * * returns ipmi response structure */ struct ipmi_rs * ipmi_sdr_get_sensor_reading(struct ipmi_intf *intf, uint8_t sensor) { struct ipmi_rq req; memset(&req, 0, sizeof (req)); req.msg.netfn = IPMI_NETFN_SE; req.msg.cmd = GET_SENSOR_READING; req.msg.data = &sensor; req.msg.data_len = 1; return intf->sendrecv(intf, &req); } /* ipmi_sdr_get_sensor_reading_ipmb - retrieve a raw sensor reading from ipmb * * @intf: ipmi interface * @sensor: sensor id * @target: IPMB target address * @lun: sensor lun * * returns ipmi response structure */ struct ipmi_rs * ipmi_sdr_get_sensor_reading_ipmb(struct ipmi_intf *intf, uint8_t sensor, uint8_t target, uint8_t lun) { struct ipmi_rq req; struct ipmi_rs *rsp; uint8_t save_addr; if (strcpy(intf->name, "ipmb")) return ipmi_sdr_get_sensor_reading(intf, sensor); save_addr = intf->target_addr; intf->target_addr = target; memset(&req, 0, sizeof (req)); req.msg.netfn = IPMI_NETFN_SE; req.msg.cmd = GET_SENSOR_READING; req.msg.data = &sensor; req.msg.data_len = 1; rsp = intf->sendrecv(intf, &req); intf->target_addr = save_addr; return rsp; } /* ipmi_sdr_get_sensor_event_status - retrieve sensor event status * * @intf: ipmi interface * @sensor: sensor id * * returns ipmi response structure */ struct ipmi_rs * ipmi_sdr_get_sensor_event_status(struct ipmi_intf *intf, uint8_t sensor) { struct ipmi_rq req; memset(&req, 0, sizeof (req)); req.msg.netfn = IPMI_NETFN_SE; req.msg.cmd = GET_SENSOR_EVENT_STATUS; req.msg.data = &sensor; req.msg.data_len = 1; return intf->sendrecv(intf, &req); } /* ipmi_sdr_get_sensor_event_enable - retrieve sensor event enables * * @intf: ipmi interface * @sensor: sensor id * * returns ipmi response structure */ struct ipmi_rs * ipmi_sdr_get_sensor_event_enable(struct ipmi_intf *intf, uint8_t sensor) { struct ipmi_rq req; memset(&req, 0, sizeof (req)); req.msg.netfn = IPMI_NETFN_SE; req.msg.cmd = GET_SENSOR_EVENT_ENABLE; req.msg.data = &sensor; req.msg.data_len = 1; return intf->sendrecv(intf, &req); } /* ipmi_sdr_get_sensor_type_desc - Get sensor type descriptor * * @type: ipmi sensor type * * returns * string from sensor_type_desc * or "reserved" * or "OEM reserved" */ const char * ipmi_sdr_get_sensor_type_desc(const uint8_t type) { static char desc[32]; memset(desc, 0, 32); if (type <= SENSOR_TYPE_MAX) return sensor_type_desc[type]; if (type < 0xc0) snprintf(desc, 32, "reserved #%02x", type); else { snprintf(desc, 32, oemval2str(sdriana,type,ipmi_oem_sdr_type_vals), type); } return desc; } /* ipmi_sdr_get_status - Return 2-character status indicator * * @stat: ipmi SDR status field * * returns * cr = critical * nc = non-critical * nr = non-recoverable * ok = ok * us = unspecified (not used) */ const char * ipmi_sdr_get_status(struct sdr_record_full_sensor *sensor, uint8_t stat) { if (stat & SDR_SENSOR_STAT_LO_NR) { if (verbose) return "Lower Non-Recoverable"; else if (sdr_extended) return "lnr"; else return "nr"; } else if (stat & SDR_SENSOR_STAT_HI_NR) { if (verbose) return "Upper Non-Recoverable"; else if (sdr_extended) return "unr"; else return "nr"; } else if (stat & SDR_SENSOR_STAT_LO_CR) { if (verbose) return "Lower Critical"; else if (sdr_extended) return "lcr"; else return "cr"; } else if (stat & SDR_SENSOR_STAT_HI_CR) { if (verbose) return "Upper Critical"; else if (sdr_extended) return "ucr"; else return "cr"; } else if (stat & SDR_SENSOR_STAT_LO_NC) { if (verbose) return "Lower Non-Critical"; else if (sdr_extended) return "lnc"; else return "nc"; } else if (stat & SDR_SENSOR_STAT_HI_NC) { if (verbose) return "Upper Non-Critical"; else if (sdr_extended) return "unc"; else return "nc"; } return "ok"; } /* ipmi_sdr_get_header - retreive SDR record header * * @intf: ipmi interface * @itr: sdr iterator * * returns pointer to static sensor retrieval struct * returns NULL on error */ static struct sdr_get_rs * ipmi_sdr_get_header(struct ipmi_intf *intf, struct ipmi_sdr_iterator *itr) { struct ipmi_rq req; struct ipmi_rs *rsp; struct sdr_get_rq sdr_rq; static struct sdr_get_rs sdr_rs; int try = 0; memset(&sdr_rq, 0, sizeof (sdr_rq)); sdr_rq.reserve_id = itr->reservation; sdr_rq.id = itr->next; sdr_rq.offset = 0; sdr_rq.length = 5; /* only get the header */ memset(&req, 0, sizeof (req)); if (itr->use_built_in == 0) { req.msg.netfn = IPMI_NETFN_STORAGE; req.msg.cmd = GET_SDR; } else { req.msg.netfn = IPMI_NETFN_SE; req.msg.cmd = GET_DEVICE_SDR; } req.msg.data = (uint8_t *) & sdr_rq; req.msg.data_len = sizeof (sdr_rq); for (try = 0; try < 5; try++) { sdr_rq.reserve_id = itr->reservation; rsp = intf->sendrecv(intf, &req); if (rsp == NULL) { lprintf(LOG_ERR, "Get SDR %04x command failed", itr->next); continue; } else if (rsp->ccode == 0xc5) { /* lost reservation */ lprintf(LOG_DEBUG, "SDR reservation %04x cancelled. " "Sleeping a bit and retrying...", itr->reservation); sleep(rand() & 3); if (ipmi_sdr_get_reservation(intf, itr->use_built_in, &(itr->reservation)) < 0) { lprintf(LOG_ERR, "Unable to renew SDR reservation"); return NULL; } } else if (rsp->ccode > 0) { lprintf(LOG_ERR, "Get SDR %04x command failed: %s", itr->next, val2str(rsp->ccode, completion_code_vals)); continue; } else { break; } } if (try == 5) return NULL; if (!rsp) return NULL; lprintf(LOG_DEBUG, "SDR record ID : 0x%04x", itr->next); memcpy(&sdr_rs, rsp->data, sizeof (sdr_rs)); if (sdr_rs.length == 0) { lprintf(LOG_ERR, "SDR record id 0x%04x: invalid length %d", itr->next, sdr_rs.length); return NULL; } /* achu (chu11 at llnl dot gov): - Some boards are stupid and * return a record id from the Get SDR Record command * different than the record id passed in. If we find this * situation, we cheat and put the original record id back in. * Otherwise, a later Get SDR Record command will fail with * completion code CBh = "Requested Sensor, data, or record * not present" */ if (sdr_rs.id != itr->next) { lprintf(LOG_DEBUG, "SDR record id mismatch: 0x%04x", sdr_rs.id); sdr_rs.id = itr->next; } lprintf(LOG_DEBUG, "SDR record type : 0x%02x", sdr_rs.type); lprintf(LOG_DEBUG, "SDR record next : 0x%04x", sdr_rs.next); lprintf(LOG_DEBUG, "SDR record bytes: %d", sdr_rs.length); return &sdr_rs; } /* ipmi_sdr_get_next_header - retreive next SDR header * * @intf: ipmi interface * @itr: sdr iterator * * returns pointer to sensor retrieval struct * returns NULL on error */ struct sdr_get_rs * ipmi_sdr_get_next_header(struct ipmi_intf *intf, struct ipmi_sdr_iterator *itr) { struct sdr_get_rs *header; if (itr->next == 0xffff) return NULL; header = ipmi_sdr_get_header(intf, itr); if (header == NULL) return NULL; itr->next = header->next; return header; } /* helper macro for printing CSV output */ #define SENSOR_PRINT_CSV(FLAG, READ) \ if (FLAG) \ printf("%.3f,", \ sdr_convert_sensor_reading( \ sensor, READ)); \ else \ printf(","); /* helper macro for priting analog values */ #define SENSOR_PRINT_NORMAL(NAME, READ) \ if (sensor->analog_flag.READ != 0) { \ printf(" %-21s : ", NAME); \ printf("%.3f\n", sdr_convert_sensor_reading( \ sensor, sensor->READ)); \ } /* helper macro for printing sensor thresholds */ #define SENSOR_PRINT_THRESH(NAME, READ, FLAG) \ if (sensor->sensor.init.thresholds && \ sensor->mask.type.threshold.read.FLAG != 0) { \ printf(" %-21s : ", NAME); \ printf("%.3f\n", sdr_convert_sensor_reading( \ sensor, sensor->threshold.READ)); \ } int ipmi_sdr_print_sensor_event_status(struct ipmi_intf *intf, uint8_t sensor_num, uint8_t sensor_type, uint8_t event_type, int numeric_fmt) { struct ipmi_rs *rsp; int i; const struct valstr assert_cond_1[] = { {0x80, "unc+"}, {0x40, "unc-"}, {0x20, "lnr+"}, {0x10, "lnr-"}, {0x08, "lcr+"}, {0x04, "lcr-"}, {0x02, "lnc+"}, {0x01, "lnc-"}, {0x00, NULL}, }; const struct valstr assert_cond_2[] = { {0x08, "unr+"}, {0x04, "unr-"}, {0x02, "ucr+"}, {0x01, "ucr-"}, {0x00, NULL}, }; rsp = ipmi_sdr_get_sensor_event_status(intf, sensor_num); if (rsp == NULL) { lprintf(LOG_DEBUG, "Error reading event status for sensor #%02x", sensor_num); return -1; } if (rsp->ccode > 0) { lprintf(LOG_DEBUG, "Error reading event status for sensor #%02x: %s", sensor_num, val2str(rsp->ccode, completion_code_vals)); return -1; } if (IS_READING_UNAVAILABLE(rsp->data[0])) { printf(" Event Status : Unavailable\n"); return 0; } if (IS_SCANNING_DISABLED(rsp->data[0])) { //printf(" Event Status : Scanning Disabled\n"); //return 0; } if (IS_EVENT_MSG_DISABLED(rsp->data[0])) { printf(" Event Status : Event Messages Disabled\n"); //return 0; } switch (numeric_fmt) { case DISCRETE_SENSOR: if (rsp->data_len == 2) { ipmi_sdr_print_discrete_state("Assertion Events", sensor_type, event_type, rsp->data[1], 0); } else if (rsp->data_len > 2) { ipmi_sdr_print_discrete_state("Assertion Events", sensor_type, event_type, rsp->data[1], rsp->data[2]); } if (rsp->data_len == 4) { ipmi_sdr_print_discrete_state("Deassertion Events", sensor_type, event_type, rsp->data[3], 0); } else if (rsp->data_len > 4) { ipmi_sdr_print_discrete_state("Deassertion Events", sensor_type, event_type, rsp->data[3], rsp->data[4]); } break; case ANALOG_SENSOR: printf(" Assertion Events : "); for (i = 0; i < 8; i++) { if (rsp->data[1] & (1 << i)) printf("%s ", val2str(1 << i, assert_cond_1)); } if (rsp->data_len > 2) { for (i = 0; i < 4; i++) { if (rsp->data[2] & (1 << i)) printf("%s ", val2str(1 << i, assert_cond_2)); } printf("\n"); if ((rsp->data_len == 4 && rsp->data[3] != 0) || (rsp->data_len > 4 && (rsp->data[3] != 0 && rsp->data[4] != 0))) { printf(" Deassertion Events : "); for (i = 0; i < 8; i++) { if (rsp->data[3] & (1 << i)) printf("%s ", val2str(1 << i, assert_cond_1)); } if (rsp->data_len > 4) { for (i = 0; i < 4; i++) { if (rsp->data[4] & (1 << i)) printf("%s ", val2str(1 << i, assert_cond_2)); } } printf("\n"); } } else { printf("\n"); } break; default: break; } return 0; } static int ipmi_sdr_print_sensor_mask(struct sdr_record_mask *mask, uint8_t sensor_type, uint8_t event_type, int numeric_fmt) { return 0; switch (numeric_fmt) { case DISCRETE_SENSOR: ipmi_sdr_print_discrete_state("Assert Event Mask", sensor_type, event_type, mask->type.discrete. assert_event & 0xff, (mask->type.discrete. assert_event & 0xff00) >> 8); ipmi_sdr_print_discrete_state("Deassert Event Mask", sensor_type, event_type, mask->type.discrete. deassert_event & 0xff, (mask->type.discrete. deassert_event & 0xff00) >> 8); break; case ANALOG_SENSOR: printf(" Assert Event Mask : "); if (mask->type.threshold.assert_lnr_high) printf("lnr+ "); if (mask->type.threshold.assert_lnr_low) printf("lnr- "); if (mask->type.threshold.assert_lcr_high) printf("lcr+ "); if (mask->type.threshold.assert_lcr_low) printf("lcr- "); if (mask->type.threshold.assert_lnc_high) printf("lnc+ "); if (mask->type.threshold.assert_lnc_low) printf("lnc- "); if (mask->type.threshold.assert_unc_high) printf("unc+ "); if (mask->type.threshold.assert_unc_low) printf("unc- "); if (mask->type.threshold.assert_ucr_high) printf("ucr+ "); if (mask->type.threshold.assert_ucr_low) printf("ucr- "); if (mask->type.threshold.assert_unr_high) printf("unr+ "); if (mask->type.threshold.assert_unr_low) printf("unr- "); printf("\n"); printf(" Deassert Event Mask : "); if (mask->type.threshold.deassert_lnr_high) printf("lnr+ "); if (mask->type.threshold.deassert_lnr_low) printf("lnr- "); if (mask->type.threshold.deassert_lcr_high) printf("lcr+ "); if (mask->type.threshold.deassert_lcr_low) printf("lcr- "); if (mask->type.threshold.deassert_lnc_high) printf("lnc+ "); if (mask->type.threshold.deassert_lnc_low) printf("lnc- "); if (mask->type.threshold.deassert_unc_high) printf("unc+ "); if (mask->type.threshold.deassert_unc_low) printf("unc- "); if (mask->type.threshold.deassert_ucr_high) printf("ucr+ "); if (mask->type.threshold.deassert_ucr_low) printf("ucr- "); if (mask->type.threshold.deassert_unr_high) printf("unr+ "); if (mask->type.threshold.deassert_unr_low) printf("unr- "); printf("\n"); break; default: break; } return 0; } int ipmi_sdr_print_sensor_event_enable(struct ipmi_intf *intf, uint8_t sensor_num, uint8_t sensor_type, uint8_t event_type, int numeric_fmt) { struct ipmi_rs *rsp; int i; const struct valstr assert_cond_1[] = { {0x80, "unc+"}, {0x40, "unc-"}, {0x20, "lnr+"}, {0x10, "lnr-"}, {0x08, "lcr+"}, {0x04, "lcr-"}, {0x02, "lnc+"}, {0x01, "lnc-"}, {0x00, NULL}, }; const struct valstr assert_cond_2[] = { {0x08, "unr+"}, {0x04, "unr-"}, {0x02, "ucr+"}, {0x01, "ucr-"}, {0x00, NULL}, }; rsp = ipmi_sdr_get_sensor_event_enable(intf, sensor_num); if (rsp == NULL) { lprintf(LOG_DEBUG, "Error reading event enable for sensor #%02x", sensor_num); return -1; } if (rsp->ccode > 0) { lprintf(LOG_DEBUG, "Error reading event enable for sensor #%02x: %s", sensor_num, val2str(rsp->ccode, completion_code_vals)); return -1; } if (IS_SCANNING_DISABLED(rsp->data[0])) { //printf(" Event Enable : Scanning Disabled\n"); //return 0; } if (IS_EVENT_MSG_DISABLED(rsp->data[0])) { printf(" Event Enable : Event Messages Disabled\n"); //return 0; } switch (numeric_fmt) { case DISCRETE_SENSOR: /* discrete */ if (rsp->data_len == 2) { ipmi_sdr_print_discrete_state("Assertions Enabled", sensor_type, event_type, rsp->data[1], 0); } else if (rsp->data_len > 2) { ipmi_sdr_print_discrete_state("Assertions Enabled", sensor_type, event_type, rsp->data[1], rsp->data[2]); } if (rsp->data_len == 4) { ipmi_sdr_print_discrete_state("Deassertions Enabled", sensor_type, event_type, rsp->data[3], 0); } else if (rsp->data_len > 4) { ipmi_sdr_print_discrete_state("Deassertions Enabled", sensor_type, event_type, rsp->data[3], rsp->data[4]); } break; case ANALOG_SENSOR: /* analog */ printf(" Assertions Enabled : "); for (i = 0; i < 8; i++) { if (rsp->data[1] & (1 << i)) printf("%s ", val2str(1 << i, assert_cond_1)); } if (rsp->data_len > 2) { for (i = 0; i < 4; i++) { if (rsp->data[2] & (1 << i)) printf("%s ", val2str(1 << i, assert_cond_2)); } printf("\n"); if ((rsp->data_len == 4 && rsp->data[3] != 0) || (rsp->data_len > 4 && (rsp->data[3] != 0 || rsp->data[4] != 0))) { printf(" Deassertions Enabled : "); for (i = 0; i < 8; i++) { if (rsp->data[3] & (1 << i)) printf("%s ", val2str(1 << i, assert_cond_1)); } if (rsp->data_len > 4) { for (i = 0; i < 4; i++) { if (rsp->data[4] & (1 << i)) printf("%s ", val2str(1 << i, assert_cond_2)); } } printf("\n"); } } else { printf("\n"); } break; default: break; } return 0; } /* ipmi_sdr_print_sensor_full - print full SDR record * * @intf: ipmi interface * @sensor: full sensor structure * * returns 0 on success * returns -1 on error */ int ipmi_sdr_print_sensor_full(struct ipmi_intf *intf, struct sdr_record_full_sensor *sensor) { char sval[16], unitstr[16], desc[17]; int i = 0, validread = 1, do_unit = 1; double val = 0.0, creading = 0.0; struct ipmi_rs *rsp; if (sensor == NULL) return -1; memset(desc, 0, sizeof (desc)); snprintf(desc, (sensor->id_code & 0x1f) + 1, "%s", sensor->id_string); /* only handle linear sensors and linearized sensors (for now) */ if (sensor->linearization >= SDR_SENSOR_L_NONLINEAR) { printf("sensor %s non-linear!\n", desc); return -1; } /* get sensor reading */ rsp = ipmi_sdr_get_sensor_reading(intf, sensor->keys.sensor_num); if (rsp == NULL) { lprintf(LOG_DEBUG, "Error reading sensor %s (#%02x)", desc, sensor->keys.sensor_num); validread = 0; } else if (rsp->ccode > 0) { if (rsp->ccode == 0xcb) { /* sensor not found */ validread = 0; } else { lprintf(LOG_DEBUG, "Error reading sensor %s (#%02x): %s", desc, sensor->keys.sensor_num, val2str(rsp->ccode, completion_code_vals)); validread = 0; } } else { if (IS_READING_UNAVAILABLE(rsp->data[1])) { /* sensor reading unavailable */ validread = 0; } else if (IS_SCANNING_DISABLED(rsp->data[1])) { /* Sensor Scanning Disabled */ validread = 0; } else if (rsp->data[0] != 0) { /* convert RAW reading into units */ val = sdr_convert_sensor_reading(sensor, rsp->data[0]); } } /* determine units with possible modifiers */ if (do_unit && validread) { memset(unitstr, 0, sizeof (unitstr)); switch (sensor->unit.modifier) { case 2: i += snprintf(unitstr, sizeof (unitstr), "%s * %s", unit_desc[sensor->unit.type.base], unit_desc[sensor->unit.type.modifier]); break; case 1: i += snprintf(unitstr, sizeof (unitstr), "%s/%s", unit_desc[sensor->unit.type.base], unit_desc[sensor->unit.type.modifier]); break; case 0: default: i += snprintf(unitstr, sizeof (unitstr), "%s", unit_desc[sensor->unit.type.base]); break; } } /* * CSV OUTPUT */ if (csv_output) { /* * print sensor name, reading, unit, state */ printf("%s,", sensor->id_code ? desc : ""); if (validread) { printf("%.*f,", (val == (int) val) ? 0 : 3, val); printf("%s,%s", do_unit ? unitstr : "", ipmi_sdr_get_status(sensor, rsp->data[2])); } else { printf(",,ns"); } if (verbose) { printf(",%d.%d,%s,%s,", sensor->entity.id, sensor->entity.instance, val2str(sensor->entity.id, entity_id_vals), ipmi_sdr_get_sensor_type_desc(sensor->sensor. type)); SENSOR_PRINT_CSV(sensor->analog_flag.nominal_read, sensor->nominal_read); SENSOR_PRINT_CSV(sensor->analog_flag.normal_min, sensor->normal_min); SENSOR_PRINT_CSV(sensor->analog_flag.normal_max, sensor->normal_max); SENSOR_PRINT_CSV(sensor->mask.type.threshold.read.unr, sensor->threshold.upper.non_recover); SENSOR_PRINT_CSV(sensor->mask.type.threshold.read.ucr, sensor->threshold.upper.critical); SENSOR_PRINT_CSV(sensor->mask.type.threshold.read.unc, sensor->threshold.upper.non_critical); SENSOR_PRINT_CSV(sensor->mask.type.threshold.read.lnr, sensor->threshold.lower.non_recover); SENSOR_PRINT_CSV(sensor->mask.type.threshold.read.lcr, sensor->threshold.lower.critical); SENSOR_PRINT_CSV(sensor->mask.type.threshold.read.lnc, sensor->threshold.lower.non_critical); printf("%.3f,%.3f", sdr_convert_sensor_reading(sensor, sensor->sensor_min), sdr_convert_sensor_reading(sensor, sensor->sensor_max)); } printf("\n"); return 0; /* done */ } /* * NORMAL OUTPUT */ if (verbose == 0 && sdr_extended == 0) { /* * print sensor name, reading, state */ printf("%-16s | ", sensor->id_code ? desc : ""); i = 0; memset(sval, 0, sizeof (sval)); if (validread) i += snprintf(sval, sizeof (sval), "%.*f %s", (val == (int) val) ? 0 : 2, val, do_unit ? unitstr : ""); else if (rsp && IS_SCANNING_DISABLED(rsp->data[1])) i += snprintf(sval, sizeof (sval), "disabled "); else i += snprintf(sval, sizeof (sval), "no reading "); printf("%s", sval); i--; for (; i < sizeof (sval); i++) printf(" "); printf(" | "); printf("%s", validread ? ipmi_sdr_get_status(sensor, rsp->data[2]) : "ns"); printf("\n"); return 0; /* done */ } else if (verbose == 0 && sdr_extended == 1) { /* * print sensor name, number, state, entity, reading */ printf("%-16s | %02Xh | %-3s | %2d.%1d | ", sensor->id_code ? desc : "", sensor->keys.sensor_num, validread ? ipmi_sdr_get_status(sensor, rsp->data[2]) : "ns", sensor->entity.id, sensor->entity.instance); i = 0; memset(sval, 0, sizeof (sval)); if (validread) i += snprintf(sval, sizeof (sval), "%.*f %s", (val == (int) val) ? 0 : 2, val, do_unit ? unitstr : ""); else if (rsp && IS_SCANNING_DISABLED(rsp->data[1])) i += snprintf(sval, sizeof (sval), "Disabled"); else i += snprintf(sval, sizeof (sval), "No Reading"); printf("%s\n", sval); return 0; /* done */ } /* * VERBOSE OUTPUT */ printf("Sensor ID : %s (0x%x)\n", sensor->id_code ? desc : "", sensor->keys.sensor_num); printf(" Entity ID : %d.%d (%s)\n", sensor->entity.id, sensor->entity.instance, val2str(sensor->entity.id, entity_id_vals)); if (sensor->unit.analog == 3) { /* discrete sensor */ printf(" Sensor Type (Discrete): %s\n", ipmi_sdr_get_sensor_type_desc(sensor->sensor.type)); printf(" Sensor Reading : "); if (validread) printf("%xh\n", (uint32_t) val); else if (rsp && IS_SCANNING_DISABLED(rsp->data[1])) printf("Disabled\n"); else printf("Not Reading\n"); printf(" Event Message Control : "); switch (sensor->sensor.capabilities.event_msg) { case 0: printf("Per-threshold\n"); break; case 1: printf("Entire Sensor Only\n"); break; case 2: printf("Global Disable Only\n"); break; case 3: printf("No Events From Sensor\n"); break; } ipmi_sdr_print_discrete_state("States Asserted", sensor->sensor.type, sensor->event_type, rsp ? rsp->data[2] : 0, rsp ? rsp->data[3] : 0); ipmi_sdr_print_sensor_mask(&sensor->mask, sensor->sensor.type, sensor->event_type, DISCRETE_SENSOR); ipmi_sdr_print_sensor_event_status(intf, sensor->keys.sensor_num, sensor->sensor.type, sensor->event_type, DISCRETE_SENSOR); ipmi_sdr_print_sensor_event_enable(intf, sensor->keys.sensor_num, sensor->sensor.type, sensor->event_type, DISCRETE_SENSOR); printf("\n"); return 0; /* done */ } /* analog sensor */ printf(" Sensor Type (Analog) : %s\n", ipmi_sdr_get_sensor_type_desc(sensor->sensor.type)); printf(" Sensor Reading : "); if (validread) { uint16_t raw_tol = __TO_TOL(sensor->mtol); double tol = sdr_convert_sensor_tolerance(sensor, raw_tol); printf("%.*f (+/- %.*f) %s\n", (val == (int) val) ? 0 : 3, val, (tol == (int) tol) ? 0 : 3, tol, unitstr); } else if (rsp && IS_SCANNING_DISABLED(rsp->data[1])) printf("Disabled\n"); else printf("No Reading\n"); printf(" Status : %s\n", validread ? ipmi_sdr_get_status(sensor, rsp->data[2]) : "Disabled"); SENSOR_PRINT_NORMAL("Nominal Reading", nominal_read); SENSOR_PRINT_NORMAL("Normal Minimum", normal_min); SENSOR_PRINT_NORMAL("Normal Maximum", normal_max); SENSOR_PRINT_THRESH("Upper non-recoverable", upper.non_recover, unr); SENSOR_PRINT_THRESH("Upper critical", upper.critical, ucr); SENSOR_PRINT_THRESH("Upper non-critical", upper.non_critical, unc); SENSOR_PRINT_THRESH("Lower non-recoverable", lower.non_recover, lnr); SENSOR_PRINT_THRESH("Lower critical", lower.critical, lcr); SENSOR_PRINT_THRESH("Lower non-critical", lower.non_critical, lnc); creading = sdr_convert_sensor_hysterisis(sensor, sensor->threshold.hysteresis.positive); if (sensor->threshold.hysteresis.positive == 0x00 || sensor->threshold.hysteresis.positive == 0xff || creading == 0) printf(" Positive Hysteresis : Unspecified\n"); else printf(" Positive Hysteresis : %.3f\n", creading); creading = sdr_convert_sensor_hysterisis(sensor, sensor->threshold.hysteresis.negative); if (sensor->threshold.hysteresis.negative == 0x00 || sensor->threshold.hysteresis.negative == 0xff || creading == 0.0) printf(" Negative Hysteresis : Unspecified\n"); else printf(" Negative Hysteresis : %.3f\n", creading); creading = sdr_convert_sensor_reading(sensor, sensor->sensor_min); if ((sensor->unit.analog == 0 && sensor->sensor_min == 0x00) || (sensor->unit.analog == 1 && sensor->sensor_min == 0xff) || (sensor->unit.analog == 2 && sensor->sensor_min == 0x80) || creading == 0.0) printf(" Minimum sensor range : Unspecified\n"); else printf(" Minimum sensor range : %.3f\n", creading); creading = sdr_convert_sensor_reading(sensor, sensor->sensor_max); if ((sensor->unit.analog == 0 && sensor->sensor_max == 0xff) || (sensor->unit.analog == 1 && sensor->sensor_max == 0x00) || (sensor->unit.analog == 2 && sensor->sensor_max == 0x7f) || creading == 0.0) printf(" Maximum sensor range : Unspecified\n"); else printf(" Maximum sensor range : %.3f\n", creading); printf(" Event Message Control : "); switch (sensor->sensor.capabilities.event_msg) { case 0: printf("Per-threshold\n"); break; case 1: printf("Entire Sensor Only\n"); break; case 2: printf("Global Disable Only\n"); break; case 3: printf("No Events From Sensor\n"); break; } printf(" Readable Thresholds : "); switch (sensor->sensor.capabilities.threshold) { case 0: printf("No Thresholds\n"); break; case 1: /* readable according to mask */ case 2: /* readable and settable according to mask */ if (sensor->mask.type.threshold.read.lnr) printf("lnr "); if (sensor->mask.type.threshold.read.lcr) printf("lcr "); if (sensor->mask.type.threshold.read.lnc) printf("lnc "); if (sensor->mask.type.threshold.read.unc) printf("unc "); if (sensor->mask.type.threshold.read.ucr) printf("ucr "); if (sensor->mask.type.threshold.read.unr) printf("unr "); printf("\n"); break; case 3: printf("Thresholds Fixed\n"); break; } printf(" Settable Thresholds : "); switch (sensor->sensor.capabilities.threshold) { case 0: printf("No Thresholds\n"); break; case 1: /* readable according to mask */ case 2: /* readable and settable according to mask */ if (sensor->mask.type.threshold.set.lnr) printf("lnr "); if (sensor->mask.type.threshold.set.lcr) printf("lcr "); if (sensor->mask.type.threshold.set.lnc) printf("lnc "); if (sensor->mask.type.threshold.set.unc) printf("unc "); if (sensor->mask.type.threshold.set.ucr) printf("ucr "); if (sensor->mask.type.threshold.set.unr) printf("unr "); printf("\n"); break; case 3: printf("Thresholds Fixed\n"); break; } if (sensor->mask.type.threshold.status_lnr || sensor->mask.type.threshold.status_lcr || sensor->mask.type.threshold.status_lnc || sensor->mask.type.threshold.status_unc || sensor->mask.type.threshold.status_ucr || sensor->mask.type.threshold.status_unr) { printf(" Threshold Read Mask : "); if (sensor->mask.type.threshold.status_lnr) printf("lnr "); if (sensor->mask.type.threshold.status_lcr) printf("lcr "); if (sensor->mask.type.threshold.status_lnc) printf("lnc "); if (sensor->mask.type.threshold.status_unc) printf("unc "); if (sensor->mask.type.threshold.status_ucr) printf("ucr "); if (sensor->mask.type.threshold.status_unr) printf("unr "); printf("\n"); } ipmi_sdr_print_sensor_mask(&sensor->mask, sensor->sensor.type, sensor->event_type, ANALOG_SENSOR); ipmi_sdr_print_sensor_event_status(intf, sensor->keys.sensor_num, sensor->sensor.type, sensor->event_type, ANALOG_SENSOR); ipmi_sdr_print_sensor_event_enable(intf, sensor->keys.sensor_num, sensor->sensor.type, sensor->event_type, ANALOG_SENSOR); printf("\n"); return 0; } static inline int get_offset(uint8_t x) { int i; for (i = 0; i < 8; i++) if (x >> i == 1) return i; return 0; } /* ipmi_sdr_print_discrete_state_mini - print list of asserted states * for a discrete sensor * * @sensor_type : sensor type code * @event_type : event type code * @state : mask of asserted states * * no meaningful return value */ void ipmi_sdr_print_discrete_state_mini(const char *separator, uint8_t sensor_type, uint8_t event_type, uint8_t state1, uint8_t state2) { uint8_t typ; struct ipmi_event_sensor_types *evt; int pre = 0, c = 0; if (state1 == 0) return; if (event_type == 0x6f) { evt = sensor_specific_types; typ = sensor_type; } else { evt = generic_event_types; typ = event_type; } for (; evt->type != NULL; evt++) { if (evt->code != typ) continue; if (evt->offset > 7) { if ((1 << (evt->offset - 8)) & state2) { if (pre++ != 0) printf("%s", separator); printf("%s", evt->desc); } } else { if ((1 << evt->offset) & state1) { if (pre++ != 0) printf("%s", separator); printf("%s", evt->desc); } } c++; } } /* ipmi_sdr_print_discrete_state - print list of asserted states * for a discrete sensor * * @desc : description for this line * @sensor_type : sensor type code * @event_type : event type code * @state : mask of asserted states * * no meaningful return value */ void ipmi_sdr_print_discrete_state(const char *desc, uint8_t sensor_type, uint8_t event_type, uint8_t state1, uint8_t state2) { uint8_t typ; struct ipmi_event_sensor_types *evt; int pre = 0, c = 0; if (state1 == 0) return; if (event_type == 0x6f) { evt = sensor_specific_types; typ = sensor_type; } else { evt = generic_event_types; typ = event_type; } for (; evt->type != NULL; evt++) { if (evt->code != typ) continue; if (pre == 0) { printf(" %-21s : %s\n", desc, evt->type); pre = 1; } if (evt->offset > 7) { if ((1 << (evt->offset - 8)) & state2) { if (evt->desc) { printf(" " "[%s]\n", evt->desc); } else { printf(" " "[no description]\n"); } } } else { if ((1 << evt->offset) & state1) { if (evt->desc) { printf(" " "[%s]\n", evt->desc); } else { printf(" " "[no description]\n"); } } } c++; } } /* ipmi_sdr_print_sensor_compact - print SDR compact record * * @intf: ipmi interface * @sensor: compact sdr record * * returns 0 on success * returns -1 on error */ int ipmi_sdr_print_sensor_compact(struct ipmi_intf *intf, struct sdr_record_compact_sensor *sensor) { struct ipmi_rs *rsp; char desc[17]; int validread = 1; if (sensor == NULL) return -1; memset(desc, 0, sizeof (desc)); snprintf(desc, (sensor->id_code & 0x1f) + 1, "%s", sensor->id_string); /* get sensor reading */ rsp = ipmi_sdr_get_sensor_reading(intf, sensor->keys.sensor_num); if (rsp == NULL) { lprintf(LOG_DEBUG, "Error reading sensor %s (#%02x)", desc, sensor->keys.sensor_num); validread = 0; } else if (rsp->ccode > 0) { /* completion code 0xcd is special case */ if (rsp->ccode == 0xcd) { /* sensor not found */ validread = 0; } else { lprintf(LOG_DEBUG, "Error reading sensor %s (#%02x): %s", desc, sensor->keys.sensor_num, val2str(rsp->ccode, completion_code_vals)); validread = 0; } } else { if (IS_READING_UNAVAILABLE(rsp->data[1])) { /* sensor reading unavailable */ validread = 0; } else if (IS_SCANNING_DISABLED(rsp->data[1])) { validread = 0; /* check for sensor scanning disabled bit */ lprintf(LOG_DEBUG, "Sensor %s (#%02x) scanning disabled", desc, sensor->keys.sensor_num); } } if (verbose) { printf("Sensor ID : %s (0x%x)\n", (sensor->id_code) ? desc : "", sensor->keys.sensor_num); printf(" Entity ID : %d.%d (%s)\n", sensor->entity.id, sensor->entity.instance, val2str(sensor->entity.id, entity_id_vals)); printf(" Sensor Type (Discrete): %s\n", ipmi_sdr_get_sensor_type_desc(sensor->sensor.type)); lprintf(LOG_DEBUG, " Event Type Code : 0x%02x", sensor->event_type); if (validread && verbose > 1) printbuf(rsp->data, rsp->data_len, "COMPACT SENSOR"); if (validread) ipmi_sdr_print_discrete_state("States Asserted", sensor->sensor.type, sensor->event_type, rsp->data[2], rsp->data[3]); ipmi_sdr_print_sensor_mask(&sensor->mask, sensor->sensor.type, sensor->event_type, DISCRETE_SENSOR); ipmi_sdr_print_sensor_event_status(intf, sensor->keys.sensor_num, sensor->sensor.type, sensor->event_type, DISCRETE_SENSOR); ipmi_sdr_print_sensor_event_enable(intf, sensor->keys.sensor_num, sensor->sensor.type, sensor->event_type, DISCRETE_SENSOR); printf("\n"); } else { int dostate = 1; if (csv_output) { printf("%s,%02Xh,", sensor->id_code ? desc : "", sensor->keys.sensor_num); if (validread == 0 || rsp->ccode != 0) { printf("ns,%d.%d,No Reading", sensor->entity.id, sensor->entity.instance); dostate = 0; } else if (rsp->ccode == 0) { if (IS_READING_UNAVAILABLE(rsp->data[1])) { printf("ns,%d.%d,No Reading", sensor->entity.id, sensor->entity.instance); dostate = 0; } else printf("ok,%d.%d,", sensor->entity.id, sensor->entity.instance); } } else if (sdr_extended) { printf("%-16s | %02Xh | ", sensor->id_code ? desc : "", sensor->keys.sensor_num); if (validread == 0 || rsp->ccode != 0) { printf("ns | %2d.%1d | ", sensor->entity.id, sensor->entity.instance); if (IS_SCANNING_DISABLED(rsp->data[1])) printf("Disabled"); else printf("No Reading"); dostate = 0; } else { if (IS_READING_UNAVAILABLE(rsp->data[1])) { printf("ns | %2d.%1d | No Reading", sensor->entity.id, sensor->entity.instance); dostate = 0; } else printf("ok | %2d.%1d | ", sensor->entity.id, sensor->entity.instance); } } else { char *state; char temp[18]; if (validread == 0) { state = csv_output ? "Not Readable" : "Not Readable "; } else if (rsp->data_len > 1 && IS_READING_UNAVAILABLE(rsp->data[1])) { state = csv_output ? "Not Readable" : "Not Readable "; } else { sprintf(temp, "0x%02x", rsp->data[2]); state = temp; } printf("%-16s | ", sensor->id_code ? desc : ""); if (validread == 0) { printf("%-17s | ns", state); } else if (rsp->ccode == 0) { printf("%-17s | %s", state, IS_READING_UNAVAILABLE(rsp->data[1]) ? "ns" : "ok"); } else { printf("%-17s | ok", state); } dostate = 0; } if (dostate) ipmi_sdr_print_discrete_state_mini(", ", sensor->sensor.type, sensor->event_type, rsp->data[2], rsp->data[3]); printf("\n"); } return 0; } /* ipmi_sdr_print_sensor_eventonly - print SDR event only record * * @intf: ipmi interface * @sensor: event only sdr record * * returns 0 on success * returns -1 on error */ int ipmi_sdr_print_sensor_eventonly(struct ipmi_intf *intf, struct sdr_record_eventonly_sensor *sensor) { char desc[17]; if (sensor == NULL) return -1; memset(desc, 0, sizeof (desc)); snprintf(desc, (sensor->id_code & 0x1f) + 1, "%s", sensor->id_string); if (verbose) { printf("Sensor ID : %s (0x%x)\n", sensor->id_code ? desc : "", sensor->keys.sensor_num); printf("Entity ID : %d.%d (%s)\n", sensor->entity.id, sensor->entity.instance, val2str(sensor->entity.id, entity_id_vals)); printf("Sensor Type : %s\n", ipmi_sdr_get_sensor_type_desc(sensor->sensor_type)); lprintf(LOG_DEBUG, "Event Type Code : 0x%02x", sensor->event_type); printf("\n"); } else { if (csv_output) printf("%s,%02Xh,ns,%d.%d,Event-Only\n", sensor->id_code ? desc : "", sensor->keys.sensor_num, sensor->entity.id, sensor->entity.instance); else if (sdr_extended) printf("%-16s | %02Xh | ns | %2d.%1d | Event-Only\n", sensor->id_code ? desc : "", sensor->keys.sensor_num, sensor->entity.id, sensor->entity.instance); else printf("%-16s | Event-Only | ns\n", sensor->id_code ? desc : ""); } return 0; } /* ipmi_sdr_print_sensor_mc_locator - print SDR MC locator record * * @intf: ipmi interface * @mc: mc locator sdr record * * returns 0 on success * returns -1 on error */ int ipmi_sdr_print_sensor_mc_locator(struct ipmi_intf *intf, struct sdr_record_mc_locator *mc) { char desc[17]; if (mc == NULL) return -1; memset(desc, 0, sizeof (desc)); snprintf(desc, (mc->id_code & 0x1f) + 1, "%s", mc->id_string); if (verbose == 0) { if (csv_output) printf("%s,00h,ok,%d.%d", mc->id_code ? desc : "", mc->entity.id, mc->entity.instance); else if (sdr_extended) { printf("%-16s | 00h | ok | %2d.%1d | ", mc->id_code ? desc : "", mc->entity.id, mc->entity.instance); printf("%s MC @ %02Xh\n", (mc-> pwr_state_notif & 0x1) ? "Static" : "Dynamic", mc->dev_slave_addr); } else { printf("%-16s | %s MC @ %02Xh %s | ok\n", mc->id_code ? desc : "", (mc-> pwr_state_notif & 0x1) ? "Static" : "Dynamic", mc->dev_slave_addr, (mc->pwr_state_notif & 0x1) ? " " : ""); } return 0; /* done */ } printf("Device ID : %s\n", mc->id_string); printf("Entity ID : %d.%d (%s)\n", mc->entity.id, mc->entity.instance, val2str(mc->entity.id, entity_id_vals)); printf("Device Slave Address : %02Xh\n", mc->dev_slave_addr); printf("Channel Number : %01Xh\n", mc->channel_num); printf("ACPI System P/S Notif : %sRequired\n", (mc->pwr_state_notif & 0x4) ? "" : "Not "); printf("ACPI Device P/S Notif : %sRequired\n", (mc->pwr_state_notif & 0x2) ? "" : "Not "); printf("Controller Presence : %s\n", (mc->pwr_state_notif & 0x1) ? "Static" : "Dynamic"); printf("Logs Init Agent Errors : %s\n", (mc->global_init & 0x8) ? "Yes" : "No"); printf("Event Message Gen : "); if (!(mc->global_init & 0x3)) printf("Enable\n"); else if ((mc->global_init & 0x3) == 0x1) printf("Disable\n"); else if ((mc->global_init & 0x3) == 0x2) printf("Do Not Init Controller\n"); else printf("Reserved\n"); printf("Device Capabilities\n"); printf(" Chassis Device : %s\n", (mc->dev_support & 0x80) ? "Yes" : "No"); printf(" Bridge : %s\n", (mc->dev_support & 0x40) ? "Yes" : "No"); printf(" IPMB Event Generator : %s\n", (mc->dev_support & 0x20) ? "Yes" : "No"); printf(" IPMB Event Receiver : %s\n", (mc->dev_support & 0x10) ? "Yes" : "No"); printf(" FRU Inventory Device : %s\n", (mc->dev_support & 0x08) ? "Yes" : "No"); printf(" SEL Device : %s\n", (mc->dev_support & 0x04) ? "Yes" : "No"); printf(" SDR Repository : %s\n", (mc->dev_support & 0x02) ? "Yes" : "No"); printf(" Sensor Device : %s\n", (mc->dev_support & 0x01) ? "Yes" : "No"); printf("\n"); return 0; } /* ipmi_sdr_print_sensor_generic_locator - print generic device locator record * * @intf: ipmi interface * @gen: generic device locator sdr record * * returns 0 on success * returns -1 on error */ int ipmi_sdr_print_sensor_generic_locator(struct ipmi_intf *intf, struct sdr_record_generic_locator *dev) { char desc[17]; memset(desc, 0, sizeof (desc)); snprintf(desc, (dev->id_code & 0x1f) + 1, "%s", dev->id_string); if (!verbose) { if (csv_output) printf("%s,00h,ns,%d.%d,", dev->id_code ? desc : "", dev->entity.id, dev->entity.instance); else if (sdr_extended) printf ("%-16s | 00h | ns | %2d.%1d | Generic Device @%02Xh:%02Xh.%1d\n", dev->id_code ? desc : "", dev->entity.id, dev->entity.instance, dev->dev_access_addr, dev->dev_slave_addr, dev->oem); else printf("%-16s | Generic @%02X:%02X.%-2d | ok\n", dev->id_code ? desc : "", dev->dev_access_addr, dev->dev_slave_addr, dev->oem); return 0; } printf("Device ID : %s\n", dev->id_string); printf("Entity ID : %d.%d (%s)\n", dev->entity.id, dev->entity.instance, val2str(dev->entity.id, entity_id_vals)); printf("Device Access Address : %02Xh\n", dev->dev_access_addr); printf("Device Slave Address : %02Xh\n", dev->dev_slave_addr); printf("Address Span : %02Xh\n", dev->addr_span); printf("Channel Number : %01Xh\n", dev->channel_num); printf("LUN.Bus : %01Xh.%01Xh\n", dev->lun, dev->bus); printf("Device Type.Modifier : %01Xh.%01Xh (%s)\n", dev->dev_type, dev->dev_type_modifier, val2str(dev->dev_type << 8 | dev->dev_type_modifier, entity_device_type_vals)); printf("OEM : %02Xh\n", dev->oem); printf("\n"); return 0; } /* ipmi_sdr_print_sensor_fru_locator - print FRU locator record * * @intf: ipmi interface * @fru: fru locator sdr record * * returns 0 on success * returns -1 on error */ int ipmi_sdr_print_sensor_fru_locator(struct ipmi_intf *intf, struct sdr_record_fru_locator *fru) { char desc[17]; memset(desc, 0, sizeof (desc)); snprintf(desc, (fru->id_code & 0x1f) + 1, "%s", fru->id_string); if (!verbose) { if (csv_output) printf("%s,00h,ns,%d.%d,", fru->id_code ? desc : "", fru->entity.id, fru->entity.instance); else if (sdr_extended) printf("%-16s | 00h | ns | %2d.%1d | %s FRU @%02Xh\n", fru->id_code ? desc : "", fru->entity.id, fru->entity.instance, (fru->logical) ? "Logical" : "Physical", fru->device_id); else printf("%-16s | %s FRU @%02Xh %02x.%x | ok\n", fru->id_code ? desc : "", (fru->logical) ? "Log" : "Phy", fru->device_id, fru->entity.id, fru->entity.instance); return 0; } printf("Device ID : %s\n", fru->id_string); printf("Entity ID : %d.%d (%s)\n", fru->entity.id, fru->entity.instance, val2str(fru->entity.id, entity_id_vals)); printf("Device Access Address : %02Xh\n", fru->dev_slave_addr); printf("%s: %02Xh\n", fru->logical ? "Logical FRU Device " : "Slave Address ", fru->device_id); printf("Channel Number : %01Xh\n", fru->channel_num); printf("LUN.Bus : %01Xh.%01Xh\n", fru->lun, fru->bus); printf("Device Type.Modifier : %01Xh.%01Xh (%s)\n", fru->dev_type, fru->dev_type_modifier, val2str(fru->dev_type << 8 | fru->dev_type_modifier, entity_device_type_vals)); printf("OEM : %02Xh\n", fru->oem); printf("\n"); return 0; } /* ipmi_sdr_print_sensor_entity_assoc - print SDR entity association record * * @intf: ipmi interface * @mc: entity association sdr record * * returns 0 on success * returns -1 on error */ int ipmi_sdr_print_sensor_entity_assoc(struct ipmi_intf *intf, struct sdr_record_entity_assoc *assoc) { return 0; } /* ipmi_sdr_print_sensor_oem_intel - print Intel OEM sensors * * @intf: ipmi interface * @oem: oem sdr record * * returns 0 on success * returns -1 on error */ static int ipmi_sdr_print_sensor_oem_intel(struct ipmi_intf *intf, struct sdr_record_oem *oem) { switch (oem->data[3]) { /* record sub-type */ case 0x02: /* Power Unit Map */ if (verbose) { printf ("Sensor ID : Power Unit Redundancy (0x%x)\n", oem->data[4]); printf ("Sensor Type : Intel OEM - Power Unit Map\n"); printf("Redundant Supplies : %d", oem->data[6]); if (oem->data[5]) printf(" (flags %xh)", oem->data[5]); printf("\n"); } switch (oem->data_len) { case 7: /* SR1300, non-redundant */ if (verbose) printf("Power Redundancy : No\n"); else if (csv_output) printf("Power Redundancy,Not Available,nr\n"); else printf ("Power Redundancy | Not Available | nr\n"); break; case 8: /* SR2300, redundant, PS1 & PS2 present */ if (verbose) { printf("Power Redundancy : No\n"); printf("Power Supply 2 Sensor : %x\n", oem->data[8]); } else if (csv_output) { printf("Power Redundancy,PS@%02xh,nr\n", oem->data[8]); } else { printf ("Power Redundancy | PS@%02xh | nr\n", oem->data[8]); } case 9: /* SR2300, non-redundant, PSx present */ if (verbose) { printf("Power Redundancy : Yes\n"); printf("Power Supply Sensor : %x\n", oem->data[7]); printf("Power Supply Sensor : %x\n", oem->data[8]); } else if (csv_output) { printf ("Power Redundancy,PS@%02xh + PS@%02xh,ok\n", oem->data[7], oem->data[8]); } else { printf ("Power Redundancy | PS@%02xh + PS@%02xh | ok\n", oem->data[7], oem->data[8]); } break; } if (verbose) printf("\n"); break; case 0x03: /* Fan Speed Control */ break; case 0x06: /* System Information */ break; case 0x07: /* Ambient Temperature Fan Speed Control */ break; default: lprintf(LOG_DEBUG, "Unknown Intel OEM SDR Record type %02x", oem->data[3]); } return 0; } /* ipmi_sdr_print_sensor_oem - print OEM sensors * * This function is generally only filled out by decoding what * a particular BMC might stuff into its OEM records. The * records are keyed off manufacturer ID and record subtypes. * * @intf: ipmi interface * @oem: oem sdr record * * returns 0 on success * returns -1 on error */ static int ipmi_sdr_print_sensor_oem(struct ipmi_intf *intf, struct sdr_record_oem *oem) { int rc = 0; if (oem == NULL) return -1; if (oem->data_len == 0 || oem->data == NULL) return -1; if (verbose > 2) printbuf(oem->data, oem->data_len, "OEM Record"); /* intel manufacturer id */ if (oem->data[0] == 0x57 && oem->data[1] == 0x01 && oem->data[2] == 0x00) { rc = ipmi_sdr_print_sensor_oem_intel(intf, oem); } return rc; } /* ipmi_sdr_print_rawentry - Print SDR entry from raw data * * @intf: ipmi interface * @type: sensor type * @raw: raw sensor data * @len: length of raw sensor data * * returns 0 on success * returns -1 on error */ int ipmi_sdr_print_rawentry(struct ipmi_intf *intf, uint8_t type, uint8_t * raw, int len) { int rc = 0; switch (type) { case SDR_RECORD_TYPE_FULL_SENSOR: rc = ipmi_sdr_print_sensor_full(intf, (struct sdr_record_full_sensor *) raw); break; case SDR_RECORD_TYPE_COMPACT_SENSOR: rc = ipmi_sdr_print_sensor_compact(intf, (struct sdr_record_compact_sensor *) raw); break; case SDR_RECORD_TYPE_EVENTONLY_SENSOR: rc = ipmi_sdr_print_sensor_eventonly(intf, (struct sdr_record_eventonly_sensor *) raw); break; case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR: rc = ipmi_sdr_print_sensor_generic_locator(intf, (struct sdr_record_generic_locator *) raw); break; case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR: rc = ipmi_sdr_print_sensor_fru_locator(intf, (struct sdr_record_fru_locator *) raw); break; case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR: rc = ipmi_sdr_print_sensor_mc_locator(intf, (struct sdr_record_mc_locator *) raw); break; case SDR_RECORD_TYPE_ENTITY_ASSOC: rc = ipmi_sdr_print_sensor_entity_assoc(intf, (struct sdr_record_entity_assoc *) raw); break; case SDR_RECORD_TYPE_OEM:{ struct sdr_record_oem oem; oem.data = raw; oem.data_len = len; rc = ipmi_sdr_print_sensor_oem(intf, (struct sdr_record_oem *) &oem); break; } case SDR_RECORD_TYPE_DEVICE_ENTITY_ASSOC: case SDR_RECORD_TYPE_MC_CONFIRMATION: case SDR_RECORD_TYPE_BMC_MSG_CHANNEL_INFO: /* not implemented */ break; } return rc; } /* ipmi_sdr_print_listentry - Print SDR entry from list * * @intf: ipmi interface * @entry: sdr record list entry * * returns 0 on success * returns -1 on error */ int ipmi_sdr_print_listentry(struct ipmi_intf *intf, struct sdr_record_list *entry) { int rc = 0; switch (entry->type) { case SDR_RECORD_TYPE_FULL_SENSOR: rc = ipmi_sdr_print_sensor_full(intf, entry->record.full); break; case SDR_RECORD_TYPE_COMPACT_SENSOR: rc = ipmi_sdr_print_sensor_compact(intf, entry->record.compact); break; case SDR_RECORD_TYPE_EVENTONLY_SENSOR: rc = ipmi_sdr_print_sensor_eventonly(intf, entry->record.eventonly); break; case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR: rc = ipmi_sdr_print_sensor_generic_locator(intf, entry->record. genloc); break; case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR: rc = ipmi_sdr_print_sensor_fru_locator(intf, entry->record.fruloc); break; case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR: rc = ipmi_sdr_print_sensor_mc_locator(intf, entry->record.mcloc); break; case SDR_RECORD_TYPE_ENTITY_ASSOC: rc = ipmi_sdr_print_sensor_entity_assoc(intf, entry->record.entassoc); break; case SDR_RECORD_TYPE_OEM: rc = ipmi_sdr_print_sensor_oem(intf, entry->record.oem); break; case SDR_RECORD_TYPE_DEVICE_ENTITY_ASSOC: case SDR_RECORD_TYPE_MC_CONFIRMATION: case SDR_RECORD_TYPE_BMC_MSG_CHANNEL_INFO: /* not implemented yet */ break; } return rc; } /* ipmi_sdr_print_sdr - iterate through SDR printing records * * intf: ipmi interface * type: record type to print * * returns 0 on success * returns -1 on error */ int ipmi_sdr_print_sdr(struct ipmi_intf *intf, uint8_t type) { struct sdr_get_rs *header; struct sdr_record_list *e; int rc = 0; lprintf(LOG_DEBUG, "Querying SDR for sensor list"); if (sdr_list_itr == NULL) { sdr_list_itr = ipmi_sdr_start(intf, 0); if (sdr_list_itr == NULL) { lprintf(LOG_ERR, "Unable to open SDR for reading"); return -1; } } for (e = sdr_list_head; e != NULL; e = e->next) { if (type != e->type && type != 0xff && type != 0xfe) continue; if (type == 0xfe && e->type != SDR_RECORD_TYPE_FULL_SENSOR && e->type != SDR_RECORD_TYPE_COMPACT_SENSOR) continue; if (ipmi_sdr_print_listentry(intf, e) < 0) rc = -1; } while ((header = ipmi_sdr_get_next_header(intf, sdr_list_itr)) != NULL) { uint8_t *rec; struct sdr_record_list *sdrr; rec = ipmi_sdr_get_record(intf, header, sdr_list_itr); if (rec == NULL) { rc = -1; continue; } sdrr = malloc(sizeof (struct sdr_record_list)); if (sdrr == NULL) { lprintf(LOG_ERR, "ipmitool: malloc failure"); break; } memset(sdrr, 0, sizeof (struct sdr_record_list)); sdrr->id = header->id; sdrr->type = header->type; switch (header->type) { case SDR_RECORD_TYPE_FULL_SENSOR: sdrr->record.full = (struct sdr_record_full_sensor *) rec; break; case SDR_RECORD_TYPE_COMPACT_SENSOR: sdrr->record.compact = (struct sdr_record_compact_sensor *) rec; break; case SDR_RECORD_TYPE_EVENTONLY_SENSOR: sdrr->record.eventonly = (struct sdr_record_eventonly_sensor *) rec; break; case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR: sdrr->record.genloc = (struct sdr_record_generic_locator *) rec; break; case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR: sdrr->record.fruloc = (struct sdr_record_fru_locator *) rec; break; case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR: sdrr->record.mcloc = (struct sdr_record_mc_locator *) rec; break; case SDR_RECORD_TYPE_ENTITY_ASSOC: sdrr->record.entassoc = (struct sdr_record_entity_assoc *) rec; break; default: free(rec); continue; } if (type == header->type || type == 0xff || (type == 0xfe && (header->type == SDR_RECORD_TYPE_FULL_SENSOR || header->type == SDR_RECORD_TYPE_COMPACT_SENSOR))) { if (ipmi_sdr_print_rawentry(intf, header->type, rec, header->length) < 0) rc = -1; } /* add to global record liset */ if (sdr_list_head == NULL) sdr_list_head = sdrr; else sdr_list_tail->next = sdrr; sdr_list_tail = sdrr; } return rc; } /* ipmi_sdr_get_reservation - Obtain SDR reservation ID * * @intf: ipmi interface * @reserve_id: pointer to short int for storing the id * * returns 0 on success * returns -1 on error */ int ipmi_sdr_get_reservation(struct ipmi_intf *intf, int use_builtin, uint16_t * reserve_id) { struct ipmi_rs *rsp; struct ipmi_rq req; /* obtain reservation ID */ memset(&req, 0, sizeof (req)); if (use_builtin == 0) { req.msg.netfn = IPMI_NETFN_STORAGE; } else { req.msg.netfn = IPMI_NETFN_SE; } req.msg.cmd = GET_SDR_RESERVE_REPO; rsp = intf->sendrecv(intf, &req); /* be slient for errors, they are handled by calling function */ if (rsp == NULL) return -1; if (rsp->ccode > 0) return -1; *reserve_id = ((struct sdr_reserve_repo_rs *) &(rsp->data))->reserve_id; lprintf(LOG_DEBUG, "SDR reservation ID %04x", *reserve_id); return 0; } /* ipmi_sdr_start - setup sdr iterator * * @intf: ipmi interface * * returns sdr iterator structure pointer * returns NULL on error */ struct ipmi_sdr_iterator * ipmi_sdr_start(struct ipmi_intf *intf, int use_builtin) { struct ipmi_sdr_iterator *itr; struct ipmi_rs *rsp; struct ipmi_rq req; struct ipm_devid_rsp *devid; itr = malloc(sizeof (struct ipmi_sdr_iterator)); if (itr == NULL) { lprintf(LOG_ERR, "ipmitool: malloc failure"); return NULL; } /* check SDRR capability */ memset(&req, 0, sizeof (req)); req.msg.netfn = IPMI_NETFN_APP; req.msg.cmd = BMC_GET_DEVICE_ID; req.msg.data_len = 0; rsp = intf->sendrecv(intf, &req); if (rsp == NULL) { lprintf(LOG_ERR, "Get Device ID command failed"); free(itr); return NULL; } if (rsp->ccode > 0) { free(itr); return NULL; } devid = (struct ipm_devid_rsp *) rsp->data; sdriana = (long)IPM_DEV_MANUFACTURER_ID(devid->manufacturer_id); if (!use_builtin && (devid->device_revision & IPM_DEV_DEVICE_ID_SDR_MASK)) { if ((devid->adtl_device_support & 0x02) == 0) { if ((devid->adtl_device_support & 0x01)) { lprintf(LOG_DEBUG, "Using Device SDRs\n"); use_built_in = 1; } else { lprintf(LOG_ERR, "Error obtaining SDR info"); free(itr); return NULL; } } else { lprintf(LOG_DEBUG, "Using SDR from Repository \n"); } } itr->use_built_in = use_builtin ? 1 : use_built_in; /***********************/ if (itr->use_built_in == 0) { struct sdr_repo_info_rs sdr_info; /* get sdr repository info */ memset(&req, 0, sizeof (req)); req.msg.netfn = IPMI_NETFN_STORAGE; req.msg.cmd = GET_SDR_REPO_INFO; rsp = intf->sendrecv(intf, &req); if (rsp == NULL) { lprintf(LOG_ERR, "Error obtaining SDR info"); free(itr); return NULL; } if (rsp->ccode > 0) { lprintf(LOG_ERR, "Error obtaining SDR info: %s", val2str(rsp->ccode, completion_code_vals)); free(itr); return NULL; } memcpy(&sdr_info, rsp->data, sizeof (sdr_info)); /* IPMIv1.0 == 0x01 * IPMIv1.5 == 0x51 * IPMIv2.0 == 0x02 */ if ((sdr_info.version != 0x51) && (sdr_info.version != 0x01) && (sdr_info.version != 0x02)) { lprintf(LOG_WARN, "WARNING: Unknown SDR repository " "version 0x%02x", sdr_info.version); } itr->total = sdr_info.count; itr->next = 0; lprintf(LOG_DEBUG, "SDR free space: %d", sdr_info.free); lprintf(LOG_DEBUG, "SDR records : %d", sdr_info.count); } else { struct sdr_device_info_rs sdr_info; /* get device sdr info */ memset(&req, 0, sizeof (req)); req.msg.netfn = IPMI_NETFN_SE; req.msg.cmd = GET_DEVICE_SDR_INFO; rsp = intf->sendrecv(intf, &req); if (!rsp || !rsp->data_len || rsp->ccode) { printf("Err in cmd get sensor sdr info\n"); free(itr); return NULL; } memcpy(&sdr_info, rsp->data, sizeof (sdr_info)); itr->total = sdr_info.count; itr->next = 0; lprintf(LOG_DEBUG, "SDR records : %d", sdr_info.count); } if (ipmi_sdr_get_reservation(intf, itr->use_built_in, &(itr->reservation)) < 0) { lprintf(LOG_ERR, "Unable to obtain SDR reservation"); free(itr); return NULL; } return itr; } /* ipmi_sdr_get_record - return RAW SDR record * * @intf: ipmi interface * @header: SDR header * @itr: SDR iterator * * returns raw SDR data * returns NULL on error */ uint8_t * ipmi_sdr_get_record(struct ipmi_intf * intf, struct sdr_get_rs * header, struct ipmi_sdr_iterator * itr) { struct ipmi_rq req; struct ipmi_rs *rsp; struct sdr_get_rq sdr_rq; uint8_t *data; int i = 0, len = header->length; if (len < 1) return NULL; data = malloc(len + 1); if (data == NULL) { lprintf(LOG_ERR, "ipmitool: malloc failure"); return NULL; } memset(data, 0, len + 1); memset(&sdr_rq, 0, sizeof (sdr_rq)); sdr_rq.reserve_id = itr->reservation; sdr_rq.id = header->id; sdr_rq.offset = 0; memset(&req, 0, sizeof (req)); if (itr->use_built_in == 0) { req.msg.netfn = IPMI_NETFN_STORAGE; req.msg.cmd = GET_SDR; } else { req.msg.netfn = IPMI_NETFN_SE; req.msg.cmd = GET_DEVICE_SDR; } req.msg.data = (uint8_t *) & sdr_rq; req.msg.data_len = sizeof (sdr_rq); /* read SDR record with partial reads * because a full read usually exceeds the maximum * transport buffer size. (completion code 0xca) */ while (i < len) { sdr_rq.length = (len - i < sdr_max_read_len) ? len - i : sdr_max_read_len; sdr_rq.offset = i + 5; /* 5 header bytes */ lprintf(LOG_DEBUG, "Getting %d bytes from SDR at offset %d", sdr_rq.length, sdr_rq.offset); rsp = intf->sendrecv(intf, &req); if (rsp == NULL) { free(data); return NULL; } switch (rsp->ccode) { case 0xca: /* read too many bytes at once */ sdr_max_read_len = (sdr_max_read_len >> 1) - 1; continue; case 0xc5: /* lost reservation */ lprintf(LOG_DEBUG, "SDR reservation cancelled. " "Sleeping a bit and retrying..."); sleep(rand() & 3); if (ipmi_sdr_get_reservation(intf, itr->use_built_in, &(itr->reservation)) < 0) { free(data); return NULL; } sdr_rq.reserve_id = itr->reservation; continue; } /* special completion codes handled above */ if (rsp->ccode > 0 || rsp->data_len == 0) { free(data); return NULL; } memcpy(data + i, rsp->data + 2, sdr_rq.length); i += sdr_max_read_len; } return data; } /* ipmi_sdr_end - cleanup SDR iterator * * @intf: ipmi interface * @itr: SDR iterator * * no meaningful return code */ void ipmi_sdr_end(struct ipmi_intf *intf, struct ipmi_sdr_iterator *itr) { if (itr) free(itr); } /* __sdr_list_add - helper function to add SDR record to list * * @head: list head * @entry: new entry to add to end of list * * returns 0 on success * returns -1 on error */ static int __sdr_list_add(struct sdr_record_list *head, struct sdr_record_list *entry) { struct sdr_record_list *e; struct sdr_record_list *new; if (head == NULL) return -1; new = malloc(sizeof (struct sdr_record_list)); if (new == NULL) { lprintf(LOG_ERR, "ipmitool: malloc failure"); return -1; } memcpy(new, entry, sizeof (struct sdr_record_list)); e = head; while (e->next) e = e->next; e->next = new; new->next = NULL; return 0; } /* __sdr_list_empty - low-level handler to clean up record list * * @head: list head to clean * * no meaningful return code */ static void __sdr_list_empty(struct sdr_record_list *head) { struct sdr_record_list *e, *f; for (e = head; e != NULL; e = f) { f = e->next; free(e); } head = NULL; } /* ipmi_sdr_list_empty - clean global SDR list * * @intf: ipmi interface * * no meaningful return code */ void ipmi_sdr_list_empty(struct ipmi_intf *intf) { struct sdr_record_list *list, *next; ipmi_sdr_end(intf, sdr_list_itr); for (list = sdr_list_head; list != NULL; list = next) { switch (list->type) { case SDR_RECORD_TYPE_FULL_SENSOR: if (list->record.full) free(list->record.full); break; case SDR_RECORD_TYPE_COMPACT_SENSOR: if (list->record.compact) free(list->record.compact); break; case SDR_RECORD_TYPE_EVENTONLY_SENSOR: if (list->record.eventonly) free(list->record.eventonly); break; case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR: if (list->record.genloc) free(list->record.genloc); break; case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR: if (list->record.fruloc) free(list->record.fruloc); break; case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR: if (list->record.mcloc) free(list->record.mcloc); break; case SDR_RECORD_TYPE_ENTITY_ASSOC: if (list->record.entassoc) free(list->record.entassoc); break; } next = list->next; free(list); } sdr_list_head = NULL; sdr_list_tail = NULL; sdr_list_itr = NULL; } /* ipmi_sdr_find_sdr_bynumtype - lookup SDR entry by number/type * * @intf: ipmi interface * @num: sensor number to search for * @type: sensor type to search for * * returns pointer to SDR list * returns NULL on error */ struct sdr_record_list * ipmi_sdr_find_sdr_bynumtype(struct ipmi_intf *intf, uint8_t num, uint8_t type) { struct sdr_get_rs *header; struct sdr_record_list *e; int found = 0; if (sdr_list_itr == NULL) { sdr_list_itr = ipmi_sdr_start(intf, 0); if (sdr_list_itr == NULL) { lprintf(LOG_ERR, "Unable to open SDR for reading"); return NULL; } } /* check what we've already read */ for (e = sdr_list_head; e != NULL; e = e->next) { switch (e->type) { case SDR_RECORD_TYPE_FULL_SENSOR: if (e->record.full->keys.sensor_num == num && e->record.full->sensor.type == type) return e; break; case SDR_RECORD_TYPE_COMPACT_SENSOR: if (e->record.compact->keys.sensor_num == num && e->record.compact->sensor.type == type) return e; break; case SDR_RECORD_TYPE_EVENTONLY_SENSOR: if (e->record.eventonly->keys.sensor_num == num && e->record.eventonly->sensor_type == type) return e; break; } } /* now keep looking */ while ((header = ipmi_sdr_get_next_header(intf, sdr_list_itr)) != NULL) { uint8_t *rec; struct sdr_record_list *sdrr; sdrr = malloc(sizeof (struct sdr_record_list)); if (sdrr == NULL) { lprintf(LOG_ERR, "ipmitool: malloc failure"); break; } memset(sdrr, 0, sizeof (struct sdr_record_list)); sdrr->id = header->id; sdrr->type = header->type; rec = ipmi_sdr_get_record(intf, header, sdr_list_itr); if (rec == NULL) continue; switch (header->type) { case SDR_RECORD_TYPE_FULL_SENSOR: sdrr->record.full = (struct sdr_record_full_sensor *) rec; if (sdrr->record.full->keys.sensor_num == num && sdrr->record.full->sensor.type == type) found = 1; break; case SDR_RECORD_TYPE_COMPACT_SENSOR: sdrr->record.compact = (struct sdr_record_compact_sensor *) rec; if (sdrr->record.compact->keys.sensor_num == num && sdrr->record.compact->sensor.type == type) found = 1; break; case SDR_RECORD_TYPE_EVENTONLY_SENSOR: sdrr->record.eventonly = (struct sdr_record_eventonly_sensor *) rec; if (sdrr->record.eventonly->keys.sensor_num == num && sdrr->record.eventonly->sensor_type == type) found = 1; break; case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR: sdrr->record.genloc = (struct sdr_record_generic_locator *) rec; break; case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR: sdrr->record.fruloc = (struct sdr_record_fru_locator *) rec; break; case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR: sdrr->record.mcloc = (struct sdr_record_mc_locator *) rec; break; case SDR_RECORD_TYPE_ENTITY_ASSOC: sdrr->record.entassoc = (struct sdr_record_entity_assoc *) rec; break; default: free(rec); continue; } /* put in the global record list */ if (sdr_list_head == NULL) sdr_list_head = sdrr; else sdr_list_tail->next = sdrr; sdr_list_tail = sdrr; if (found) return sdrr; } return NULL; } /* ipmi_sdr_find_sdr_bysensortype - lookup SDR entry by sensor type * * @intf: ipmi interface * @type: sensor type to search for * * returns pointer to SDR list * returns NULL on error */ struct sdr_record_list * ipmi_sdr_find_sdr_bysensortype(struct ipmi_intf *intf, uint8_t type) { struct sdr_record_list *head; struct sdr_get_rs *header; struct sdr_record_list *e; head = malloc(sizeof (struct sdr_record_list)); if (head == NULL) { lprintf(LOG_ERR, "ipmitool: malloc failure"); return NULL; } memset(head, 0, sizeof (struct sdr_record_list)); if (sdr_list_itr == NULL) { sdr_list_itr = ipmi_sdr_start(intf, 0); if (sdr_list_itr == NULL) { lprintf(LOG_ERR, "Unable to open SDR for reading"); return NULL; } } /* check what we've already read */ for (e = sdr_list_head; e != NULL; e = e->next) { switch (e->type) { case SDR_RECORD_TYPE_FULL_SENSOR: if (e->record.full->sensor.type == type) __sdr_list_add(head, e); break; case SDR_RECORD_TYPE_COMPACT_SENSOR: if (e->record.compact->sensor.type == type) __sdr_list_add(head, e); break; case SDR_RECORD_TYPE_EVENTONLY_SENSOR: if (e->record.eventonly->sensor_type == type) __sdr_list_add(head, e); break; } } /* now keep looking */ while ((header = ipmi_sdr_get_next_header(intf, sdr_list_itr)) != NULL) { uint8_t *rec; struct sdr_record_list *sdrr; sdrr = malloc(sizeof (struct sdr_record_list)); if (sdrr == NULL) { lprintf(LOG_ERR, "ipmitool: malloc failure"); break; } memset(sdrr, 0, sizeof (struct sdr_record_list)); sdrr->id = header->id; sdrr->type = header->type; rec = ipmi_sdr_get_record(intf, header, sdr_list_itr); if (rec == NULL) continue; switch (header->type) { case SDR_RECORD_TYPE_FULL_SENSOR: sdrr->record.full = (struct sdr_record_full_sensor *) rec; if (sdrr->record.full->sensor.type == type) __sdr_list_add(head, sdrr); break; case SDR_RECORD_TYPE_COMPACT_SENSOR: sdrr->record.compact = (struct sdr_record_compact_sensor *) rec; if (sdrr->record.compact->sensor.type == type) __sdr_list_add(head, sdrr); break; case SDR_RECORD_TYPE_EVENTONLY_SENSOR: sdrr->record.eventonly = (struct sdr_record_eventonly_sensor *) rec; if (sdrr->record.eventonly->sensor_type == type) __sdr_list_add(head, sdrr); break; case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR: sdrr->record.genloc = (struct sdr_record_generic_locator *) rec; break; case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR: sdrr->record.fruloc = (struct sdr_record_fru_locator *) rec; break; case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR: sdrr->record.mcloc = (struct sdr_record_mc_locator *) rec; break; case SDR_RECORD_TYPE_ENTITY_ASSOC: sdrr->record.entassoc = (struct sdr_record_entity_assoc *) rec; break; default: free(rec); continue; } /* put in the global record list */ if (sdr_list_head == NULL) sdr_list_head = sdrr; else sdr_list_tail->next = sdrr; sdr_list_tail = sdrr; } return head; } /* ipmi_sdr_find_sdr_byentity - lookup SDR entry by entity association * * @intf: ipmi interface * @entity: entity id/instance to search for * * returns pointer to SDR list * returns NULL on error */ struct sdr_record_list * ipmi_sdr_find_sdr_byentity(struct ipmi_intf *intf, struct entity_id *entity) { struct sdr_get_rs *header; struct sdr_record_list *e; struct sdr_record_list *head; head = malloc(sizeof (struct sdr_record_list)); if (head == NULL) { lprintf(LOG_ERR, "ipmitool: malloc failure"); return NULL; } memset(head, 0, sizeof (struct sdr_record_list)); if (sdr_list_itr == NULL) { sdr_list_itr = ipmi_sdr_start(intf, 0); if (sdr_list_itr == NULL) { lprintf(LOG_ERR, "Unable to open SDR for reading"); return NULL; } } /* check what we've already read */ for (e = sdr_list_head; e != NULL; e = e->next) { switch (e->type) { case SDR_RECORD_TYPE_FULL_SENSOR: if (e->record.full->entity.id == entity->id && (entity->instance == 0x7f || e->record.full->entity.instance == entity->instance)) __sdr_list_add(head, e); break; case SDR_RECORD_TYPE_COMPACT_SENSOR: if (e->record.compact->entity.id == entity->id && (entity->instance == 0x7f || e->record.compact->entity.instance == entity->instance)) __sdr_list_add(head, e); break; case SDR_RECORD_TYPE_EVENTONLY_SENSOR: if (e->record.eventonly->entity.id == entity->id && (entity->instance == 0x7f || e->record.eventonly->entity.instance == entity->instance)) __sdr_list_add(head, e); break; case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR: if (e->record.genloc->entity.id == entity->id && (entity->instance == 0x7f || e->record.genloc->entity.instance == entity->instance)) __sdr_list_add(head, e); break; case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR: if (e->record.fruloc->entity.id == entity->id && (entity->instance == 0x7f || e->record.fruloc->entity.instance == entity->instance)) __sdr_list_add(head, e); break; case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR: if (e->record.mcloc->entity.id == entity->id && (entity->instance == 0x7f || e->record.mcloc->entity.instance == entity->instance)) __sdr_list_add(head, e); break; case SDR_RECORD_TYPE_ENTITY_ASSOC: if (e->record.entassoc->entity.id == entity->id && (entity->instance == 0x7f || e->record.entassoc->entity.instance == entity->instance)) __sdr_list_add(head, e); break; } } /* now keep looking */ while ((header = ipmi_sdr_get_next_header(intf, sdr_list_itr)) != NULL) { uint8_t *rec; struct sdr_record_list *sdrr; sdrr = malloc(sizeof (struct sdr_record_list)); if (sdrr == NULL) { lprintf(LOG_ERR, "ipmitool: malloc failure"); break; } memset(sdrr, 0, sizeof (struct sdr_record_list)); sdrr->id = header->id; sdrr->type = header->type; rec = ipmi_sdr_get_record(intf, header, sdr_list_itr); if (rec == NULL) continue; switch (header->type) { case SDR_RECORD_TYPE_FULL_SENSOR: sdrr->record.full = (struct sdr_record_full_sensor *) rec; if (sdrr->record.full->entity.id == entity->id && (entity->instance == 0x7f || sdrr->record.full->entity.instance == entity->instance)) __sdr_list_add(head, sdrr); break; case SDR_RECORD_TYPE_COMPACT_SENSOR: sdrr->record.compact = (struct sdr_record_compact_sensor *) rec; if (sdrr->record.compact->entity.id == entity->id && (entity->instance == 0x7f || sdrr->record.compact->entity.instance == entity->instance)) __sdr_list_add(head, sdrr); break; case SDR_RECORD_TYPE_EVENTONLY_SENSOR: sdrr->record.eventonly = (struct sdr_record_eventonly_sensor *) rec; if (sdrr->record.eventonly->entity.id == entity->id && (entity->instance == 0x7f || sdrr->record.eventonly->entity.instance == entity->instance)) __sdr_list_add(head, sdrr); break; case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR: sdrr->record.genloc = (struct sdr_record_generic_locator *) rec; if (sdrr->record.genloc->entity.id == entity->id && (entity->instance == 0x7f || sdrr->record.genloc->entity.instance == entity->instance)) __sdr_list_add(head, sdrr); break; case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR: sdrr->record.fruloc = (struct sdr_record_fru_locator *) rec; if (sdrr->record.fruloc->entity.id == entity->id && (entity->instance == 0x7f || sdrr->record.fruloc->entity.instance == entity->instance)) __sdr_list_add(head, sdrr); break; case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR: sdrr->record.mcloc = (struct sdr_record_mc_locator *) rec; if (sdrr->record.mcloc->entity.id == entity->id && (entity->instance == 0x7f || sdrr->record.mcloc->entity.instance == entity->instance)) __sdr_list_add(head, sdrr); break; case SDR_RECORD_TYPE_ENTITY_ASSOC: sdrr->record.entassoc = (struct sdr_record_entity_assoc *) rec; if (sdrr->record.entassoc->entity.id == entity->id && (entity->instance == 0x7f || sdrr->record.entassoc->entity.instance == entity->instance)) __sdr_list_add(head, sdrr); break; default: free(rec); continue; } /* add to global record list */ if (sdr_list_head == NULL) sdr_list_head = sdrr; else sdr_list_tail->next = sdrr; sdr_list_tail = sdrr; } return head; } /* ipmi_sdr_find_sdr_bytype - lookup SDR entries by type * * @intf: ipmi interface * @type: type of sensor record to search for * * returns pointer to SDR list with all matching entities * returns NULL on error */ struct sdr_record_list * ipmi_sdr_find_sdr_bytype(struct ipmi_intf *intf, uint8_t type) { struct sdr_get_rs *header; struct sdr_record_list *e; struct sdr_record_list *head; head = malloc(sizeof (struct sdr_record_list)); if (head == NULL) { lprintf(LOG_ERR, "ipmitool: malloc failure"); return NULL; } memset(head, 0, sizeof (struct sdr_record_list)); if (sdr_list_itr == NULL) { sdr_list_itr = ipmi_sdr_start(intf, 0); if (sdr_list_itr == NULL) { lprintf(LOG_ERR, "Unable to open SDR for reading"); return NULL; } } /* check what we've already read */ for (e = sdr_list_head; e != NULL; e = e->next) if (e->type == type) __sdr_list_add(head, e); /* now keep looking */ while ((header = ipmi_sdr_get_next_header(intf, sdr_list_itr)) != NULL) { uint8_t *rec; struct sdr_record_list *sdrr; sdrr = malloc(sizeof (struct sdr_record_list)); if (sdrr == NULL) { lprintf(LOG_ERR, "ipmitool: malloc failure"); break; } memset(sdrr, 0, sizeof (struct sdr_record_list)); sdrr->id = header->id; sdrr->type = header->type; rec = ipmi_sdr_get_record(intf, header, sdr_list_itr); if (rec == NULL) continue; switch (header->type) { case SDR_RECORD_TYPE_FULL_SENSOR: sdrr->record.full = (struct sdr_record_full_sensor *) rec; break; case SDR_RECORD_TYPE_COMPACT_SENSOR: sdrr->record.compact = (struct sdr_record_compact_sensor *) rec; break; case SDR_RECORD_TYPE_EVENTONLY_SENSOR: sdrr->record.eventonly = (struct sdr_record_eventonly_sensor *) rec; break; case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR: sdrr->record.genloc = (struct sdr_record_generic_locator *) rec; break; case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR: sdrr->record.fruloc = (struct sdr_record_fru_locator *) rec; break; case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR: sdrr->record.mcloc = (struct sdr_record_mc_locator *) rec; break; case SDR_RECORD_TYPE_ENTITY_ASSOC: sdrr->record.entassoc = (struct sdr_record_entity_assoc *) rec; break; default: free(rec); continue; } if (header->type == type) __sdr_list_add(head, sdrr); /* add to global record list */ if (sdr_list_head == NULL) sdr_list_head = sdrr; else sdr_list_tail->next = sdrr; sdr_list_tail = sdrr; } return head; } /* ipmi_sdr_find_sdr_byid - lookup SDR entry by ID string * * @intf: ipmi interface * @id: string to match for sensor name * * returns pointer to SDR list * returns NULL on error */ struct sdr_record_list * ipmi_sdr_find_sdr_byid(struct ipmi_intf *intf, char *id) { struct sdr_get_rs *header; struct sdr_record_list *e; int found = 0; int idlen; if (id == NULL) return NULL; idlen = strlen(id); if (sdr_list_itr == NULL) { sdr_list_itr = ipmi_sdr_start(intf, 0); if (sdr_list_itr == NULL) { lprintf(LOG_ERR, "Unable to open SDR for reading"); return NULL; } } /* check what we've already read */ for (e = sdr_list_head; e != NULL; e = e->next) { switch (e->type) { case SDR_RECORD_TYPE_FULL_SENSOR: if (!strncmp((const char *)e->record.full->id_string, (const char *)id, __max(e->record.full->id_code & 0x1f, idlen))) return e; break; case SDR_RECORD_TYPE_COMPACT_SENSOR: if (!strncmp((const char *)e->record.compact->id_string, (const char *)id, __max(e->record.compact->id_code & 0x1f, idlen))) return e; break; case SDR_RECORD_TYPE_EVENTONLY_SENSOR: if (!strncmp((const char *)e->record.eventonly->id_string, (const char *)id, __max(e->record.eventonly->id_code & 0x1f, idlen))) return e; break; case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR: if (!strncmp((const char *)e->record.genloc->id_string, (const char *)id, __max(e->record.genloc->id_code & 0x1f, idlen))) return e; break; case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR: if (!strncmp((const char *)e->record.fruloc->id_string, (const char *)id, __max(e->record.fruloc->id_code & 0x1f, idlen))) return e; break; case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR: if (!strncmp((const char *)e->record.mcloc->id_string, (const char *)id, __max(e->record.mcloc->id_code & 0x1f, idlen))) return e; break; } } /* now keep looking */ while ((header = ipmi_sdr_get_next_header(intf, sdr_list_itr)) != NULL) { uint8_t *rec; struct sdr_record_list *sdrr; sdrr = malloc(sizeof (struct sdr_record_list)); if (sdrr == NULL) { lprintf(LOG_ERR, "ipmitool: malloc failure"); break; } memset(sdrr, 0, sizeof (struct sdr_record_list)); sdrr->id = header->id; sdrr->type = header->type; rec = ipmi_sdr_get_record(intf, header, sdr_list_itr); if (rec == NULL) continue; switch (header->type) { case SDR_RECORD_TYPE_FULL_SENSOR: sdrr->record.full = (struct sdr_record_full_sensor *) rec; if (!strncmp( (const char *)sdrr->record.full->id_string, (const char *)id, __max(sdrr->record.full->id_code & 0x1f, idlen))) found = 1; break; case SDR_RECORD_TYPE_COMPACT_SENSOR: sdrr->record.compact = (struct sdr_record_compact_sensor *) rec; if (!strncmp( (const char *)sdrr->record.compact->id_string, (const char *)id, __max(sdrr->record.compact->id_code & 0x1f, idlen))) found = 1; break; case SDR_RECORD_TYPE_EVENTONLY_SENSOR: sdrr->record.eventonly = (struct sdr_record_eventonly_sensor *) rec; if (!strncmp( (const char *)sdrr->record.eventonly->id_string, (const char *)id, __max(sdrr->record.eventonly->id_code & 0x1f, idlen))) found = 1; break; case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR: sdrr->record.genloc = (struct sdr_record_generic_locator *) rec; if (!strncmp( (const char *)sdrr->record.genloc->id_string, (const char *)id, __max(sdrr->record.genloc->id_code & 0x1f, idlen))) found = 1; break; case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR: sdrr->record.fruloc = (struct sdr_record_fru_locator *) rec; if (!strncmp( (const char *)sdrr->record.fruloc->id_string, (const char *)id, __max(sdrr->record.fruloc->id_code & 0x1f, idlen))) found = 1; break; case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR: sdrr->record.mcloc = (struct sdr_record_mc_locator *) rec; if (!strncmp( (const char *)sdrr->record.mcloc->id_string, (const char *)id, __max(sdrr->record.mcloc->id_code & 0x1f, idlen))) found = 1; break; case SDR_RECORD_TYPE_ENTITY_ASSOC: sdrr->record.entassoc = (struct sdr_record_entity_assoc *) rec; break; default: free(rec); continue; } /* add to global record liset */ if (sdr_list_head == NULL) sdr_list_head = sdrr; else sdr_list_tail->next = sdrr; sdr_list_tail = sdrr; if (found) return sdrr; } return NULL; } /* ipmi_sdr_list_cache_fromfile - generate SDR cache for fast lookup from local file * * @intf: ipmi interface * @ifile: input filename * * returns pointer to SDR list * returns NULL on error */ int ipmi_sdr_list_cache_fromfile(struct ipmi_intf *intf, const char *ifile) { FILE *fp; struct __sdr_header { uint16_t id; uint8_t version; uint8_t type; uint8_t length; } header; struct sdr_record_list *sdrr; uint8_t *rec; int ret = 0, count = 0, bc = 0; if (ifile == NULL) { lprintf(LOG_ERR, "No SDR cache filename given"); return -1; } fp = ipmi_open_file_read(ifile); if (fp == NULL) { lprintf(LOG_ERR, "Unable to open SDR cache %s for reading", ifile); return -1; } while (feof(fp) == 0) { memset(&header, 0, 5); bc = fread(&header, 1, 5, fp); if (bc <= 0) break; if (bc != 5) { lprintf(LOG_ERR, "header read %d bytes, expected 5", bc); ret = -1; break; } if (header.length == 0) continue; if (header.version != 0x51 && header.version != 0x01 && header.version != 0x02) { lprintf(LOG_WARN, "invalid sdr header version %02x", header.version); ret = -1; break; } sdrr = malloc(sizeof (struct sdr_record_list)); if (sdrr == NULL) { lprintf(LOG_ERR, "ipmitool: malloc failure"); ret = -1; break; } memset(sdrr, 0, sizeof (struct sdr_record_list)); sdrr->id = header.id; sdrr->type = header.type; rec = malloc(header.length + 1); if (rec == NULL) { lprintf(LOG_ERR, "ipmitool: malloc failure"); ret = -1; break; } memset(rec, 0, header.length + 1); bc = fread(rec, 1, header.length, fp); if (bc != header.length) { lprintf(LOG_ERR, "record %04x read %d bytes, expected %d", header.id, bc, header.length); ret = -1; break; } switch (header.type) { case SDR_RECORD_TYPE_FULL_SENSOR: sdrr->record.full = (struct sdr_record_full_sensor *) rec; break; case SDR_RECORD_TYPE_COMPACT_SENSOR: sdrr->record.compact = (struct sdr_record_compact_sensor *) rec; break; case SDR_RECORD_TYPE_EVENTONLY_SENSOR: sdrr->record.eventonly = (struct sdr_record_eventonly_sensor *) rec; break; case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR: sdrr->record.genloc = (struct sdr_record_generic_locator *) rec; break; case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR: sdrr->record.fruloc = (struct sdr_record_fru_locator *) rec; break; case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR: sdrr->record.mcloc = (struct sdr_record_mc_locator *) rec; break; case SDR_RECORD_TYPE_ENTITY_ASSOC: sdrr->record.entassoc = (struct sdr_record_entity_assoc *) rec; break; default: free(rec); continue; } /* add to global record liset */ if (sdr_list_head == NULL) sdr_list_head = sdrr; else sdr_list_tail->next = sdrr; sdr_list_tail = sdrr; count++; lprintf(LOG_DEBUG, "Read record %04x from file into cache", sdrr->id); } if (sdr_list_itr == NULL) { sdr_list_itr = malloc(sizeof (struct ipmi_sdr_iterator)); if (sdr_list_itr != NULL) { sdr_list_itr->reservation = 0; sdr_list_itr->total = count; sdr_list_itr->next = 0xffff; } } fclose(fp); return ret; } /* ipmi_sdr_list_cache - generate SDR cache for fast lookup * * @intf: ipmi interface * * returns pointer to SDR list * returns NULL on error */ int ipmi_sdr_list_cache(struct ipmi_intf *intf) { struct sdr_get_rs *header; if (sdr_list_itr == NULL) { sdr_list_itr = ipmi_sdr_start(intf, 0); if (sdr_list_itr == NULL) { lprintf(LOG_ERR, "Unable to open SDR for reading"); return -1; } } while ((header = ipmi_sdr_get_next_header(intf, sdr_list_itr)) != NULL) { uint8_t *rec; struct sdr_record_list *sdrr; sdrr = malloc(sizeof (struct sdr_record_list)); if (sdrr == NULL) { lprintf(LOG_ERR, "ipmitool: malloc failure"); break; } memset(sdrr, 0, sizeof (struct sdr_record_list)); sdrr->id = header->id; sdrr->type = header->type; rec = ipmi_sdr_get_record(intf, header, sdr_list_itr); if (rec == NULL) continue; switch (header->type) { case SDR_RECORD_TYPE_FULL_SENSOR: sdrr->record.full = (struct sdr_record_full_sensor *) rec; break; case SDR_RECORD_TYPE_COMPACT_SENSOR: sdrr->record.compact = (struct sdr_record_compact_sensor *) rec; break; case SDR_RECORD_TYPE_EVENTONLY_SENSOR: sdrr->record.eventonly = (struct sdr_record_eventonly_sensor *) rec; break; case SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR: sdrr->record.genloc = (struct sdr_record_generic_locator *) rec; break; case SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR: sdrr->record.fruloc = (struct sdr_record_fru_locator *) rec; break; case SDR_RECORD_TYPE_MC_DEVICE_LOCATOR: sdrr->record.mcloc = (struct sdr_record_mc_locator *) rec; break; case SDR_RECORD_TYPE_ENTITY_ASSOC: sdrr->record.entassoc = (struct sdr_record_entity_assoc *) rec; break; default: free(rec); continue; } /* add to global record liset */ if (sdr_list_head == NULL) sdr_list_head = sdrr; else sdr_list_tail->next = sdrr; sdr_list_tail = sdrr; } return 0; } /* * ipmi_sdr_get_info * * Execute the GET SDR REPOSITORY INFO command, and populate the sdr_info * structure. * See section 33.9 of the IPMI v2 specification for details * * returns 0 on success * -1 on transport error * > 0 for other errors */ int ipmi_sdr_get_info(struct ipmi_intf *intf, struct get_sdr_repository_info_rsp *sdr_repository_info) { struct ipmi_rs *rsp; struct ipmi_rq req; memset(&req, 0, sizeof (req)); req.msg.netfn = IPMI_NETFN_STORAGE; // 0x0A req.msg.cmd = IPMI_GET_SDR_REPOSITORY_INFO; // 0x20 req.msg.data = 0; req.msg.data_len = 0; rsp = intf->sendrecv(intf, &req); if (rsp == NULL) { lprintf(LOG_ERR, "Get SDR Repository Info command failed"); return -1; } if (rsp->ccode > 0) { lprintf(LOG_ERR, "Get SDR Repository Info command failed: %s", val2str(rsp->ccode, completion_code_vals)); return -1; } memcpy(sdr_repository_info, rsp->data, __min(sizeof (struct get_sdr_repository_info_rsp), rsp->data_len)); return 0; } /* ipmi_sdr_timestamp - return string from timestamp value * * @stamp: 32bit timestamp * * returns pointer to static buffer */ static char * ipmi_sdr_timestamp(uint32_t stamp) { static char tbuf[40]; time_t s = (time_t) stamp; memset(tbuf, 0, 40); if (stamp) strftime(tbuf, sizeof (tbuf), "%m/%d/%Y %H:%M:%S", localtime(&s)); return tbuf; } /* * ipmi_sdr_print_info * * Display the return data of the GET SDR REPOSITORY INFO command * See section 33.9 of the IPMI v2 specification for details * * returns 0 on success * -1 on error */ int ipmi_sdr_print_info(struct ipmi_intf *intf) { uint32_t timestamp; uint16_t free_space; struct get_sdr_repository_info_rsp sdr_repository_info; if (ipmi_sdr_get_info(intf, &sdr_repository_info) != 0) return -1; printf("SDR Version : 0x%x\n", sdr_repository_info.sdr_version); printf("Record Count : %d\n", (sdr_repository_info.record_count_msb << 8) | sdr_repository_info.record_count_lsb); free_space = (sdr_repository_info.free_space[0] << 8) | sdr_repository_info.free_space[1]; printf("Free Space : "); switch (free_space) { case 0x0000: printf("none (full)\n"); break; case 0xFFFF: printf("unspecified\n"); break; case 0xFFFE: printf("> 64Kb - 2 bytes\n"); break; default: printf("%d bytes\n", free_space); break; } timestamp = (sdr_repository_info.most_recent_addition_timestamp[3] << 24) | (sdr_repository_info.most_recent_addition_timestamp[2] << 16) | (sdr_repository_info.most_recent_addition_timestamp[1] << 8) | sdr_repository_info.most_recent_addition_timestamp[0]; printf("Most recent Addition : %s\n", ipmi_sdr_timestamp(timestamp)); timestamp = (sdr_repository_info.most_recent_erase_timestamp[3] << 24) | (sdr_repository_info.most_recent_erase_timestamp[2] << 16) | (sdr_repository_info.most_recent_erase_timestamp[1] << 8) | sdr_repository_info.most_recent_erase_timestamp[0]; printf("Most recent Erase : %s\n", ipmi_sdr_timestamp(timestamp)); printf("SDR overflow : %s\n", (sdr_repository_info.overflow_flag ? "yes" : "no")); printf("SDR Repository Update Support : "); switch (sdr_repository_info.modal_update_support) { case 0: printf("unspecified\n"); break; case 1: printf("non-modal\n"); break; case 2: printf("modal\n"); break; case 3: printf("modal and non-modal\n"); break; default: printf("error in response\n"); break; } printf("Delete SDR supported : %s\n", sdr_repository_info.delete_sdr_supported ? "yes" : "no"); printf("Partial Add SDR supported : %s\n", sdr_repository_info.partial_add_sdr_supported ? "yes" : "no"); printf("Reserve SDR repository supported : %s\n", sdr_repository_info. reserve_sdr_repository_supported ? "yes" : "no"); printf("SDR Repository Alloc info supported : %s\n", sdr_repository_info.delete_sdr_supported ? "yes" : "no"); return 0; } /* ipmi_sdr_dump_bin - Write raw SDR to binary file * * used for post-processing by other utilities * * @intf: ipmi interface * @ofile: output filename * * returns 0 on success * returns -1 on error */ static int ipmi_sdr_dump_bin(struct ipmi_intf *intf, const char *ofile) { struct sdr_get_rs *header; struct ipmi_sdr_iterator *itr; struct sdr_record_list *sdrr; FILE *fp; int rc = 0; /* open connection to SDR */ itr = ipmi_sdr_start(intf, 0); if (itr == NULL) { lprintf(LOG_ERR, "Unable to open SDR for reading"); return -1; } printf("Dumping Sensor Data Repository to '%s'\n", ofile); /* generate list of records */ while ((header = ipmi_sdr_get_next_header(intf, itr)) != NULL) { sdrr = malloc(sizeof(struct sdr_record_list)); if (sdrr == NULL) { lprintf(LOG_ERR, "ipmitool: malloc failure"); return -1; } memset(sdrr, 0, sizeof(struct sdr_record_list)); lprintf(LOG_INFO, "Record ID %04x (%d bytes)", header->id, header->length); sdrr->id = header->id; sdrr->version = header->version; sdrr->type = header->type; sdrr->length = header->length; sdrr->raw = ipmi_sdr_get_record(intf, header, itr); if (sdr_list_head == NULL) sdr_list_head = sdrr; else sdr_list_tail->next = sdrr; sdr_list_tail = sdrr; } ipmi_sdr_end(intf, itr); /* now write to file */ fp = ipmi_open_file_write(ofile); if (fp == NULL) return -1; for (sdrr = sdr_list_head; sdrr != NULL; sdrr = sdrr->next) { int r; uint8_t h[5]; /* build and write sdr header */ h[0] = sdrr->id & 0xff; h[1] = (sdrr->id >> 8) & 0xff; h[2] = sdrr->version; h[3] = sdrr->type; h[4] = sdrr->length; r = fwrite(h, 1, 5, fp); if (r != 5) { lprintf(LOG_ERR, "Error writing header " "to output file %s", ofile); rc = -1; break; } /* write sdr entry */ r = fwrite(sdrr->raw, 1, sdrr->length, fp); if (r != sdrr->length) { lprintf(LOG_ERR, "Error writing %d record bytes " "to output file %s", sdrr->length, ofile); rc = -1; break; } } fclose(fp); return rc; } /* ipmi_sdr_print_type - print all sensors of specified type * * @intf: ipmi interface * @type: sensor type * * returns 0 on success * returns -1 on error */ int ipmi_sdr_print_type(struct ipmi_intf *intf, char *type) { struct sdr_record_list *list, *entry; int rc = 0; int x; uint8_t sensor_type = 0; if (type == NULL || strncasecmp(type, "help", 4) == 0 || strncasecmp(type, "list", 4) == 0) { printf("Sensor Types:\n"); for (x = 1; x < SENSOR_TYPE_MAX; x += 2) { printf("\t%-25s %-25s\n", sensor_type_desc[x], sensor_type_desc[x + 1]); } return 0; } if (strncmp(type, "0x", 2) == 0) { /* begins with 0x so let it be entered as raw hex value */ sensor_type = (uint8_t) strtol(type, NULL, 0); } else { for (x = 1; x < SENSOR_TYPE_MAX; x++) { if (strncasecmp(sensor_type_desc[x], type, __maxlen(type, sensor_type_desc[x])) == 0) { sensor_type = x; break; } } if (sensor_type != x) { printf("Sensor Types:\n"); for (x = 1; x < SENSOR_TYPE_MAX; x += 2) { printf("\t%-25s %-25s\n", sensor_type_desc[x], sensor_type_desc[x + 1]); } return 0; } } list = ipmi_sdr_find_sdr_bysensortype(intf, sensor_type); for (entry = list; entry != NULL; entry = entry->next) { rc = ipmi_sdr_print_listentry(intf, entry); } __sdr_list_empty(list); return rc; } /* ipmi_sdr_print_entity - print entity's for an id/instance * * @intf: ipmi interface * @entitystr: entity id/instance string, i.e. "1.1" * * returns 0 on success * returns -1 on error */ int ipmi_sdr_print_entity(struct ipmi_intf *intf, char *entitystr) { struct sdr_record_list *list, *entry; struct entity_id entity; unsigned id = 0; unsigned instance = 0; int rc = 0; if (entitystr == NULL || strncasecmp(entitystr, "help", 4) == 0 || strncasecmp(entitystr, "list", 4) == 0) { print_valstr_2col(entity_id_vals, "Entity IDs", -1); return 0; } if (sscanf(entitystr, "%u.%u", &id, &instance) != 2) { /* perhaps no instance was passed * in which case we want all instances for this entity * so set entity.instance = 0x7f to indicate this */ if (sscanf(entitystr, "%u", &id) != 1) { int i, j=0; /* now try string input */ for (i = 0; entity_id_vals[i].str != NULL; i++) { if (strncasecmp(entitystr, entity_id_vals[i].str, __maxlen(entitystr, entity_id_vals[i].str)) == 0) { entity.id = entity_id_vals[i].val; entity.instance = 0x7f; j=1; } } if (j == 0) { lprintf(LOG_ERR, "Invalid entity: %s", entitystr); return -1; } } else { entity.id = id; entity.instance = 0x7f; } } else { entity.id = id; entity.instance = instance; } list = ipmi_sdr_find_sdr_byentity(intf, &entity); for (entry = list; entry != NULL; entry = entry->next) { rc = ipmi_sdr_print_listentry(intf, entry); } __sdr_list_empty(list); return rc; } /* ipmi_sdr_print_entry_byid - print sdr entries identified by sensor id * * @intf: ipmi interface * @argc: number of entries to print * @argv: list of sensor ids * * returns 0 on success * returns -1 on error */ static int ipmi_sdr_print_entry_byid(struct ipmi_intf *intf, int argc, char **argv) { struct sdr_record_list *sdr; int rc = 0; int v, i; if (argc < 1) { lprintf(LOG_ERR, "No Sensor ID supplied"); return -1; } v = verbose; verbose = 1; for (i = 0; i < argc; i++) { sdr = ipmi_sdr_find_sdr_byid(intf, argv[i]); if (sdr == NULL) { lprintf(LOG_ERR, "Unable to find sensor id '%s'", argv[i]); } else { if (ipmi_sdr_print_listentry(intf, sdr) < 0) rc = -1; } } verbose = v; return rc; } /* ipmi_sdr_main - top-level handler for SDR subsystem * * @intf: ipmi interface * @argc: number of arguments * @argv: argument list * * returns 0 on success * returns -1 on error */ int ipmi_sdr_main(struct ipmi_intf *intf, int argc, char **argv) { int rc = 0; /* initialize random numbers used later */ srand(time(NULL)); if (argc == 0) return ipmi_sdr_print_sdr(intf, 0xfe); else if (strncmp(argv[0], "help", 4) == 0) { lprintf(LOG_ERR, "SDR Commands: list | elist [all|full|compact|event|mcloc|fru|generic]"); lprintf(LOG_ERR, " all All SDR Records"); lprintf(LOG_ERR, " full Full Sensor Record"); lprintf(LOG_ERR, " compact Compact Sensor Record"); lprintf(LOG_ERR, " event Event-Only Sensor Record"); lprintf(LOG_ERR, " mcloc Management Controller Locator Record"); lprintf(LOG_ERR, " fru FRU Locator Record"); lprintf(LOG_ERR, " generic Generic Device Locator Record"); lprintf(LOG_ERR, " type [sensor type]"); lprintf(LOG_ERR, " list Get a list of available sensor types"); lprintf(LOG_ERR, " get Retrieve the state of a specified sensor"); lprintf(LOG_ERR, " info"); lprintf(LOG_ERR, " Display information about the repository itself"); lprintf(LOG_ERR, " entity [.]"); lprintf(LOG_ERR, " Display all sensors associated with an entity"); lprintf(LOG_ERR, " dump "); lprintf(LOG_ERR, " Dump raw SDR data to a file"); lprintf(LOG_ERR, " fill"); lprintf(LOG_ERR, " sensors Creates the SDR repository for the current configuration"); lprintf(LOG_ERR, " file Load SDR repository from a file"); } else if (strncmp(argv[0], "list", 4) == 0 || strncmp(argv[0], "elist", 5) == 0) { if (strncmp(argv[0], "elist", 5) == 0) sdr_extended = 1; else sdr_extended = 0; if (argc <= 1) rc = ipmi_sdr_print_sdr(intf, 0xfe); else if (strncmp(argv[1], "all", 3) == 0) rc = ipmi_sdr_print_sdr(intf, 0xff); else if (strncmp(argv[1], "full", 4) == 0) rc = ipmi_sdr_print_sdr(intf, SDR_RECORD_TYPE_FULL_SENSOR); else if (strncmp(argv[1], "compact", 7) == 0) rc = ipmi_sdr_print_sdr(intf, SDR_RECORD_TYPE_COMPACT_SENSOR); else if (strncmp(argv[1], "event", 5) == 0) rc = ipmi_sdr_print_sdr(intf, SDR_RECORD_TYPE_EVENTONLY_SENSOR); else if (strncmp(argv[1], "mcloc", 5) == 0) rc = ipmi_sdr_print_sdr(intf, SDR_RECORD_TYPE_MC_DEVICE_LOCATOR); else if (strncmp(argv[1], "fru", 3) == 0) rc = ipmi_sdr_print_sdr(intf, SDR_RECORD_TYPE_FRU_DEVICE_LOCATOR); else if (strncmp(argv[1], "generic", 7) == 0) rc = ipmi_sdr_print_sdr(intf, SDR_RECORD_TYPE_GENERIC_DEVICE_LOCATOR); else lprintf(LOG_ERR, "usage: sdr list [all|full|compact|event|mcloc|fru|generic]"); } else if (strncmp(argv[0], "type", 4) == 0) { sdr_extended = 1; rc = ipmi_sdr_print_type(intf, argv[1]); } else if (strncmp(argv[0], "entity", 6) == 0) { sdr_extended = 1; rc = ipmi_sdr_print_entity(intf, argv[1]); } else if (strncmp(argv[0], "info", 4) == 0) { rc = ipmi_sdr_print_info(intf); } else if (strncmp(argv[0], "get", 4) == 0) { rc = ipmi_sdr_print_entry_byid(intf, argc - 1, &argv[1]); } else if (strncmp(argv[0], "dump", 4) == 0) { if (argc < 2) lprintf(LOG_ERR, "usage: sdr dump "); else rc = ipmi_sdr_dump_bin(intf, argv[1]); } else if (strncmp(argv[0], "fill", 3) == 0) { if (argc <= 1) { lprintf(LOG_ERR, "usage: sdr fill sensors"); lprintf(LOG_ERR, "usage: sdr fill file "); rc = -1; } else if (strncmp(argv[1], "sensors", 7) == 0) { rc = ipmi_sdr_add_from_sensors(intf, 21); } else if (strncmp(argv[1], "file", 4) == 0) { if (argc < 3) { lprintf(LOG_ERR, "sdr fill: Missing filename"); rc = -1; } else { rc = ipmi_sdr_add_from_file(intf, argv[2]); } } } else { lprintf(LOG_ERR, "Invalid SDR command: %s", argv[0]); rc = -1; } return rc; }